
An Application of
Automated Theorem Provers
To Computer System Security:

The Schematic Protection Model

THESIS

Mitchell David Irwin Hirschfeld, Civilian

AFIT/GCO/ENG/10-18

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

The views expressed in this thesis are those of the auther and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or
the United States Government.

AFIT/GCO/ENG/10-18

An Application of

Automated Theorem Provers

To Computer System Security:

The Schematic Protection Model

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

Mitchell David Irwin Hirschfeld, B.A.C.S.

Civilian

June 2010

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCO/ENG/10-18

An Application of

Automated Theorem Provers

To Computer System Security:

The Schematic Protection Model

Mitchell David Irwin Hirschfeld, B.A.C.S.

Civilian

Approved:

/signed/ 10 June 2010

Dr. Rusty O. Baldwin (Chairman) date

/signed/ 10 June 2010

Dr. Barry E. Mullins (Member) date

/signed/ 10 June 2010

Lt Col Jeffrey W. Humphries Ph.D.
(Member)

date

AFIT/GCO/ENG/10-18

Abstract

The Schematic Protection Model (SPM) is specified in the Symbolic Analysis

Laboratory (SAL), and theorems about Take-Grant and New Technology File System

schemes are proven. Arbitrary systems can be specified in SPM and analyzed. This

is the first known automated analysis of SPM specifications in a theorem prover.

The SPM specification was created in such a way that new specifications share the

underlying framework and are configurable within the specifications file alone. This

allows new specifications to be created with ease as demonstrated by the four unique

models included within this document. This also allows future users to more easily

specify models without recreating the framework. The built-in modules of SAL

provide the needed support to make the model flexible and entities asynchronous.

This flexibility allows for the number of entities to be dynamic and to meet the

needs of different specifications. The models analyzed in this research demonstrate

the validity of the specification and its application to real-world systems.

iv

Acknowledgements

I would like to first of all thank my wife for her continued love and support

as I dedicated my time to completing my Master’s of Science. Her encouragement

truly was second to none. While she does not share an interest in the subject matter

of my thesis, she supported and inspired me to finish.

I would also like to thank Dr. Baldwin for his guidance. When issues arose

during research, he was always approachable to ask questions, clarify my intentions,

and demand results. Without his guidance I most certainly would have been lost

and overwhelmed.

Finally, I would like to offer a special thanks to Radu Siminiceanu for his help

through the trials of SAL. Without his knowledge and guidance, I would have not

overcome many obstacles while learning the intricacies of SAL. I offer my gratitude

for the time he spent and patience he showed.

Mitchell David Irwin Hirschfeld

v

Table of Contents
Page

Abstract . iv

Acknowledgements . v

List of Figures . viii

List of Abbreviations . xi

I. Introduction . 1
1.1 Background . 1

1.2 Research Objectives 2

1.3 Documentation Overview 2
1.3.1 Introduction 2
1.3.2 Logic, Models, and Provers 2

1.3.3 Specification of the Schematic Protection Model 3

1.3.4 Model Application 3

1.3.5 Conclusion . 4
1.3.6 Appendix . 4

II. Logic, Models, and Automated Theorem Provers 5

2.1 Modeling of Security and Access Control Models . . . 5

2.1.1 Safety versus Security 6

2.2 Basic Logic . 7

2.2.1 Propositional Logic 7

2.2.2 Predicate Logic 9

2.2.3 Modal Logic 11

2.3 Existing Models . 11

2.3.1 Access Control Matrix 12
2.3.2 Take-Grant Model 14

2.4 Schematic Protection Model 18
2.5 Automated Theorem Provers 22

2.5.1 Symbolic Analysis Laboratory (SAL) 23

2.6 Current Research . 23
2.7 Summary . 25

vi

Page

III. Symbolic Analysis Laboratory 26

3.1 Symbolic Analysis Laboratory 26

3.1.1 Tools Included 26
3.1.2 Specification Language 27

3.1.3 Transition Language 27

3.1.4 Modules . 28
3.2 SPM in SAL . 29

3.2.1 SPM Types 29

3.2.2 System State 36

3.2.3 SPM Entity Functions 37

3.2.4 Entity Specification and Maximal State 44

3.2.5 Controller and System 52

3.3 Validation . 55
3.3.1 Take-Grant Model 55
3.3.2 Theorems . 57

3.4 Summary . 64

IV. Application Models of SPM . 65

4.1 File Systems . 65

4.1.1 Hierarchy . 66

4.1.2 Groups . 70

4.1.3 NTFS . 76
4.2 Summary . 82

V. Conclusions . 83
5.1 Contribution . 83
5.2 Limitations . 83
5.3 Future Research . 85

Appendix A. SAL Tool Output . 86

Bibliography . 87

vii

List of Figures
Figure Page

2.1. Truth Table . 9

2.2. Simple Access Control Matrix 13

2.3. Example Islands . 16

2.4. Example of a Terminal Span 16

2.5. Example of a Non-Terminal Span 16

2.6. Example of an Initial Span 17

2.7. Example of a Non-Initial Span 17

2.8. Take-Grant canShare(α, x, y, G0) predicate 18

2.9. Take-Grant canSteal(α, x, y, G0) predicate 18

3.1. Protection Types and Rights 30

3.2. Index Creation and Number of Starting Nodes 30

3.3. Create Rules . 31

3.4. Starting Entities . 31

3.5. Create Rights . 32

3.6. Ticket . 33

3.7. Universal Link . 33

3.8. Filters . 34

3.9. Domains . 36

3.10. Global Record . 37

3.11. Increment Indexes . 38

3.12. Can Share Part 1 . 39

3.13. Can Share Part 2 . 40

3.14. Can Share Part 3 . 41

3.15. Can Share pickup . 41

3.16. Update Domain (Sharing) . 42

viii

Figure Page

3.17. Share Ticket . 43

3.18. Update System (Creating) 43

3.19. Can Create . 44

3.20. Entity Variables and Initialization 45

3.21. No Create Rules Transition 46

3.22. Last Create Transition . 47

3.23. Create Transition Part 1 . 48

3.24. Create Transition Part 2 . 49

3.25. Sharing Last Ticket . 50

3.26. Sharing Transition Any Node 51

3.27. Sharing Transition Last Right 51

3.28. Maximal State Transitions 52

3.29. Controller . 53

3.30. SPM System . 54

3.31. Take-Grant Starting State . 55

3.32. Take-Grant Ending State . 55

3.33. Take-Grant Types . 56

3.34. Take-Grant Starting Nodes and Create Rules 57

3.35. Take-Grant Node Types and Create Rights 58

3.36. Take-Grant Links and Filters 59

3.37. Take-Grant Starting Domains 59

3.38. Take-Grant Starting State . 61

3.39. Take-Grant Ending State . 61

3.40. Take-Grant Theorem: Create Before Share 61

3.41. Take-Grant Theorem: Created 62

3.42. Take-Grant Theorem: Shared x Right 62

3.43. Take-Grant Theorem: Domain 63

ix

Figure Page

4.1. Hierarchy File System: Types and Rights 66

4.2. Hierarchy File System: Starting Entities 67

4.3. Hierarchy File System: Links and Filters 68

4.4. Hierarchy File System: Starting Domains 68

4.5. Hierarchy File System Theorem: Create Before Share 69

4.6. Hierarchy File System Theorem: Non-Original Do not Create 69

4.7. Hierarchy File System Theorem: User Access to File 69

4.8. Hierarchy File System Theorem: Domains 70

4.9. File System Groups: Types and Rights 71

4.10. File System Groups: Starting Entities 72

4.11. File System Groups: Links and Filters 73

4.12. File System Groups: Starting Domains 74

4.13. File System Groups Theorem: Create Before Share 74

4.14. File System Groups Theorem: Non-Original Do not Create . 75

4.15. File System Groups Theorem: Exclusion of low entities . . . 75

4.16. File System Groups Theorem: Sharing to high entities 75

4.17. File System Groups Theorem: Domains 76

4.18. NTFS: Types and Rights . 77

4.19. NTFS: Starting Entities . 78

4.20. File System Groups: Links and Filters 79

4.21. File System Groups: Starting Domains 80

4.22. NTFS Theorem: Create Before Share 80

4.23. NTFS Theorem: Non Original do not Create 80

4.24. NTFS Theorem: Low Entities do not Gain Access 81

4.25. NTFS Theorem: Access is granted to Users 81

4.26. File System Groups Theorem: Create Before Share 81

4.27. File System Groups Theorem: Domains 81

x

List of Abbreviations
Abbreviation Page

NTFS New Technology File System 3

CAS Computer Algebra Systems 23

STT Simple Type Theory . 24

SAL Symbolic Analysis Laboratory 26

sal-wfc SAL well-formedness checker 26

sal-smc SAL symbolic model checker 26

BDD Binary Decision Diagram 26

sal-bmc SAL bounded model checker 26

SAT propositional satisfiability 26

sal-inf-bmc SAL infinite bounded model checker 27

sal-atg SAL automated test generator 27

PVS Prototype Verification System 27

LTL linear temporal logic . 60

CTL computation tree logic 60

xi

An Application of

Automated Theorem Provers

To Computer System Security:

The Schematic Protection Model

I. Introduction

1.1 Background

The world of cyber technology is advancing quickly. Complex networks have

been and are being created linking individual computers into distributed information

systems. While this advancement in technology has had positive effects, usability and

access to information have driven the designs of systems while security to protect the

information they contain has lagged behind. While niches such as cryptography and

hash functions have seen advances, the overall security of computers and networks

themselves have not. Contemporary security models include the Access Control

Matrix, Take-Grant Model, and Schematic Protection Model. These models were

created more than 20 years ago and, aside from some useful extensions, have largely

remained unchanged since their creation. Even so, they remain relevant to today’s

security challenges, and in particular the Schematic Protection Model can be usefully

employed to study current security systems.

1

The models remain applicable to today’s security needs; however, they are not

automated. To overcome this shortcoming, incorporating these models into auto-

mated tools is highly desirable. The usefulness of the models increases with auto-

mated computation. The development of automated analysis of specifications refines

and advances theoretical models underlying the security of information systems.

1.2 Research Objectives

The goal of this research is to develop a formal specification of the Schematic

Protection Model using an automated theorem prover and model checker. To validate

the model and to demonstrate it behaves properly it is applied to several realistic

examples.

1.3 Documentation Overview

1.3.1 Introduction. This chapter introduces the research and explains its

application in advancing the theoretical models underlying computer security. It

describes the need for advancement in theory and proposes a more formal treatment

as a solution. It states the objectives to be reached and outlines an overview of the

document.

1.3.2 Logic, Models, and Provers. Chapter II begins with an explanation

of computer safety. Propositional, predicate, and modal logics are briefly reviewed

as well as their application to underlying theory. Next, the Access Control Matrix,

2

Take-Grant Model, and the Schematic Protection Model are thoroughly explained,

and an analysis of their application is discussed. The Schematic Protection Model

is selected for further analysis. The use of automated theorem provers in other

research areas is reviewed and a brief introduction to the selected Symbolic Analysis

Laboratory is conducted.

1.3.3 Specification of the Schematic Protection Model. Chapter III intro-

duces the Symbolic Analysis Laboratory, the tools that are included in the software

suite, and their use. The specification of the Schematic Protection Model follows. In

this chapter the segments of the model specification are described in depth as well as

the implementation of the Schematic Protection Model. The chapter concludes by

presenting the validation of the implementation using a Take-Grant Model modeled

via the Schematic Protection Model.

1.3.4 Model Application. Chapter IV applies the specification to the New

Technology Files System (NTFS) access controls. NTFS uses a white list for file

access and its structure and group permissions are analyzed via Schematic Protec-

tion Model specifications. The NTFS hierarchical protection model allows users to

access the contents of a folder with correct permissions in place. The group permis-

sions model demonstrates how membership in a group allows access to a file while

excluding non-members. Finally, a combined model exibits both of these properties

of NTFS.

3

1.3.5 Conclusion. Chapter V contains the research conclusions, applica-

tion, and suggestions for future research.

1.3.6 Appendix. The appendix includes contact information to request

verbose output from the automated theorem prover.

4

II. Logic, Models, and Automated Theorem Provers

2.1 Modeling of Security and Access Control Models

The ability to access information stored in computers has made it easy to

manipulate data. However, access to information can have negative effects if used

maliciously or if the information is sabotaged. The growth of computer networks and

shared resources has enhanced this effect. Data once safe due to physical barriers is

now accessible via computer networks. This dependence on computers necessitates

more attention to information security, and the basic building blocks of security

include three components: confidentiality, integrity, and availability [Bis03].

Confidentiality limits information or resources to those authorized access to

them. For example, military, government, or industry information is often marked

For Official Use Only. Confidentiality can even extend to the knowledge of exis-

tence of data. Because computer systems store this sensitive information, security

mechanisms must be in place to protect it.

Integrity controls have two aspects: data integrity and integrity of origin. Data

integrity guarantees that information has not been tampered with or changed by

unauthorized people. Integrity of origin, on the other hand, establishes the source

of the data. Integrity is important because while confidentiality prevents users from

accessing restricted information, data can still be changed inappropriately by an

5

authorized user and be corrupted. Likewise, corrupt information can be injected

into a system if the originator of data is wrongfully trusted.

Finally, availability must be considered. Simply unplugging a system and pre-

venting access would ensure the confidentiality of the information. Likewise it would

preserve the current state of the data including its sources. However, the data would

not be available. Similarly, if authentication mechanisms require an excessive amount

of time to complete, use of the system would be restricted. The data used for daily

activity, while still technically accessible, would not be reasonably available. Thus,

attacks on availability that intentionally deny access to data or a service result in a

compromise of security.

2.1.1 Safety versus Security. While systems that control the flow of data

attain some measure of security, this control cannot be proved in a mathematically-

rigorous way. Third party applications, unique configurations, and exploits that

have repeatedly compromised “secure” systems demonstrate that proving system-

wide security is virtually impossible. Even many underlying control system modules

in computers are not provably secure [Bis03]. In fact, security measures today are

most often akin to patching a dam or treating the symptoms of an illness rather

than its cause. Problems are solved as they arise but the root cause of the problem

remains unaddressed. For this reason, security, as such, is not an attainable state.

What is practically attainable is an absence of perceived threats. With this in mind,

6

the “safety” of systems rather than their security is specified using underlying models

that are provable.

Much like an engineer develops or uses fundamental theories prior to building

a bridge or circuit, security depends on the underlying proofs of safety. The safety of

a system is the theory of security with never-failing, accurate access controls. With

modest assumptions and simplified models the safety of a system can be rigorously

examined. That is, the safety of a system with respect to the protection of individual

rights is provable. A system is said to be safe if it does not leak a specific right, r, from

a safe starting state. This ensures that the system will never enter an unsafe state.

Even so, the implementation of a safe system can have vulnerabilities introduced via

the security mechanisms used [Bis03]. Because the absence of flaws is not provable,

only the safety of the system can be rigorously examined. This examination is based,

ultimately, on logic.

2.2 Basic Logic

Logic models of interest for proving computer safety are rooted in propositional

and predicate logic. These logic systems are briefly reviewed before presenting the

safety models that employ them. For a more in depth review of logic see [HR06].

2.2.1 Propositional Logic. Propositional logic contains operators, symbols,

and underlying axioms that, when evaluated, result in a conclusion of true or false.

Thus, a proposition is a declarative statement that can be determined to be true

7

or false. “The kitten is small,”“The barn is red,” and “My name is Bob” are all

examples of declarative statements that can be evaluated. On the other hand, non-

declarative statements such as “Make the bed” or “May you live a productive life”

cannot be evaluated and so are not propositions. Simple declarative statements can

be combined so conclusions can be reached. For example, given the conditional

“If the world is round and Columbus has a seaworthy ship, he can sail around it”

and given the statements “The world is round,” and “Columbus has a seaworthy

ship” are true, the conclusion “Columbus can sail around the world” can be validly

inferred.

While such a collection of declarative statements allow simple conclusions to

be drawn, a more concise unambiguous representation is desired to represent the

underlying logical operators employed. Some of these include ¬, ∧, ∨ and → repre-

senting negation, conjunction, disjunction, and implication, respectively. By using

these operators, complex statements can be expressed more concisely. Using symbols

to represent short atomic statements, these equations are compressed even further.

Natural deduction extracts similarities in the propositional equations [HR06]. A set

of equations combined and used in a proof form premises. These statements can be

thought of as the evidence. The equation or formula to be reached is the conclu-

sion. By applying proof techniques to the premises, underlying assumptions, and

the outcomes of previous conclusions, a proof may be obtained. The combination of

premises and conclusions as one expression is called a sequent. A sequent is valid

8

a b ¬ a a ∧ b a ∨ b a→ b
T T F T T T
T F F F T F
F T T F T T
F F T F F T

Figure 2.1: Truth Table

only when a proof has been found. These terms and the basic structure of a sequent

are discussed in more depth in Section 2.5.

Propositions can be represented and combined in truth tables like the one

shown in Figure 2.1. Each column combines simpler statements with operators like

the ones mentioned previously. The example truth table shows different operators for

each column and uses propositions represented by symbols a and b. These variables

represent simple declarative statements and are listed with their combined outcomes.

In later columns, operands combine a and b into other statements. These are read

as not a, a and b, a or b, and if a then b. While these declarative statements are

useful, more expressive statements cannot be represented in this simple logic. To

capture these higher order statements, predicate logic is used.

2.2.2 Predicate Logic. Predicate logic builds on propositional logic but is

more expressive. Consider the declarative sentence “Every mother has at least one

child.” Under propositional logic this declarative statement could be assigned an out-

come but it cannot be further divided. However, there are some useful aspects of this

statement that cannot be captured by propositional logic. Predicates are functions

that accept a finite number of arguments and return true or false. Mother(Jane),

9

for example, could result in true if Mother() is defined “is a mother” and Jane is in

fact a mother. Likewise, Child(Bobby) would return true when Child() is defined

to be “is a child.” Predicates can take multiple arguments such as MotherOf(Jane,

Bobby) which is true if Jane is the mother of Bobby. Notice that order is significant

and is the reason that predicates must be carefully specified and defined.

While predicates divide a larger declarative statement, they do not capture

quantities. If a program was written to evaluate the statement above, it would be

costly and inefficient to list all the possible outcomes in a truth table similar to the

one in Figure 2.1. Predicate logic introduces variables instead. A variable takes the

place of any term in the universe. For example, Jane, Bobby, and all other terms in

the universe could be represented by the variable x.

Predicates and variables allow for a more concise and robust representation,

but they do not support specifying quantities. For this reason, predicate logic also

includes the quantifiers “For all” and “at least one.” Without this added feature, an

exhaustive list of instances would have to be created. Instead, the use of quantifiers

and variables allow concise statements like the original example. The symbols ∃ and

∀ stand for there exists and for all respectively. The statement “For all x, there exists

a y such that MotherOf(y,x),” extends the previous example by using quantifiers.

This statement can be written as “∀ x ∃ y (MotherOf(y,x)).”

Predicate logic also includes functions that return an object. For example, a

function such as FamousAgent() when passed MI6 might return the object James

10

Bond. Similar to predicates, functions must be well defined. Predicate logic allows

the analysis of the state of a system at a given point in time. However, it does not

include temporal statements needed to describe the operation of a computer system.

2.2.3 Modal Logic. Modal Logic can represent more complex assertions. A

statement is not evaluated to be simply true or false, but can have varying degrees

of truth [HR06]. When an outcome is always true it is said to be necessarily true. A

truth known to be true by the knowledge of a particular entity x is said to be known

to be true by agent x or believed to be true. Finally, a truth that will be true is

true in the future. “The square root of 25 is 5” is a necessary truth because it is not

temporal or dependent on what a specific entity knows. “It is raining outside” could

be true based on the perception of a specific entity. Finally, “there is no cure for

the common cold” is currently true but may not be in the future. While necessarily

true is a desirable statement because it is “strongest,” the other two truths are very

useful when considering computer safety. Defining theorems that specify conditions

for truth will be of great importance in this reasearch.

2.3 Existing Models

Operating systems have long incorporated mechanisms to authenticate users to

ensure confidentiality, integrity, and to a more limited extent availability of services

and data. The use of passwords, smart cards, and biometrics such as fingerprint

or retina scans are just a few examples of mechanisms implemented within com-

11

puters. Some systems even put a priority on security before functionality. While

implementation of these mechanisms is challenging and difficult, simplified and the-

oretical representations are available. Separating the implementation of mechanism

and policy simplifies system modeling. Several fundamental models are worthy of

closer examination.

2.3.1 Access Control Matrix. The Access Control Matrix is a model gen-

eral enough to capture the protection state of any system [Bis03]. The model is

represented as a matrix that includes every object and subject in the system. Sub-

jects are actors in the system while objects are acted upon. Because subjects can

also be acted upon, they are objects as well. Subjects are contained in the rows of

the matrix and have certain rights over the system objects. Since subjects are also

objects, subjects as well as proper objects have columns in the matrix. The matrix in

Figure 2.2 has two subjects s 1 and s 2. Objects are listed across in the columns and

include file 1, file 2, s 1, and s 2. Because each subject intersects with each object,

the model can capture all sets of rights a subject can have. Defined rights for this

example are r, w, o, x. These are contained in the intersections where the subject

has a given right or set of rights over the object. In Figure 2.2 the subject s 1 has

the r, w, and o rights over file 1. Subject s 1 also has rights over s 2 as shown by

the intersection in the matrix. If a subject has no rights over a particular object, it

simply has the null set of rights at the corresponding intersection.

12

file 1 file 2 s 1 s 2
s 1 r,w,o w,r,x
s 2 x,r r,w,x,o r

Figure 2.2: Simple Access Control Matrix

Rights must be clearly defined but can represent any form of access. Common

rights include read, write, execute, append and own. These rights are further defined

into more specific terms to govern the particular interaction. The Access Control

Matrix also makes use of primitive commands including create, destroy, enter, and

delete to manipulate the matrix. The create command adds a new subject or object

assuming they do not already exist. The create command adds a new column and/or

row to the matrix. The Destroy Command removes an object or subject from the

system. All rights to the destroyed object are removed. Enter and delete on the other

hand, grant or remove rights. Enter adds rights to the intersection of a specified

subject and object, and delete removes rights.

An important aspect of the Access Control Matrix is the principle of Atten-

uation of Privilege. A subject cannot grant rights it does not possess. This limits

the rights that can be transferred within the system. However, there are customary

exceptions. The own right can be defined such that a subject has the ability to grant

any rights over an owned object. For instance, suppose a user creates a file on a

computer. Since they created it (i.e., own it), they have all rights associated with

it. Because an owner, as defined can grant itself any right to an owned object, any

right to the object can also be given by the owner to another subject.

13

While the ACM is robust in that it captures all states and all possible transi-

tions, it is also very impractical to implement as it grows large quickly. Furthermore,

due to its generality, a predicate function cannot be created to determine if a right

can be leaked. This more simply states means it is not decidable. For this reason,

the ACM is not a suitable representation to determine the safety of the system.

2.3.2 Take-Grant Model. The Take-Grant Model is a simpler model de-

signed with decidability as one of its major tenets. As such, it can be determined if

a subject can obtain a specific right over an object. While an Access Control Matrix

has operations to add and remove both rights and objects, the Take-Grant Model

does not include a destroy command to remove a subject or object. The absence

of destroy is needed for the decidability of the model. With its inclusion, the sys-

tem safety is not provable because rights could have been leaked and the evidence

removed before analysis. For more detailed information on this model see [Sny81]

and [LS77].

In the Take-Grant Model, each node is represented as a vertex in a finite di-

rected graph with edges that indicate the rights a node holds over another node.

These rights can include typical rights such as read, write, execute, and append.

However there are two “distinguished” rights called take and grant (explained be-

low). Like the access control model, other rights can be defined to represent other

capabilities of the system. These rights are also denoted on the graph using labels on

directed edges. Nodes, represented as vertices, are either solid or unfilled to denote

14

a subject or an object, respectively. A node with an “x” through it denotes a node

that is either a subject or an object.

The rights take and grant are “distinguished” rights because they are the

means by which rights are transferred between nodes. The node with a take right

over another node can acquire any rights the node possesses. Similarly, the grant

right allows a node to give rights it possesses to any node it has a grant right over.

The transfer of rights through the system is limited by these distinguished rights

thereby making the transfer of rights in the system decidable.

The operations within the Take-Grant model include take, grant, create, and

remove. These change the graph by adding edges, adding vertices, or removing edges.

Take and Grant add edges by sharing rights that entities have. Create adds a new

entity to the graph with incoming edges from the creating node. The rights over the

newly specified entity are found in the rule itself. A create rule is written “x creates

(α to new vertex) y.” This statement creates a new entity y and gives x α rights

over it where α is a subset of the rights in the system. Similarly, remove removes an

edge entirely or a subset of the rights it represents. It is written “x removes (α to)

y.” This statement removes the rights α from the set β of rights x has over y where

α is a subset of β. If α = β, the edge is removed from the graph.

Because objects do not act with respect to the protection of a system, they

can possess a right but cannot use it. Subjects connected by take and grant rights

are called islands as seen in Figure 2.3. The two islands are represented by the

15

Figure 2.3: Example Islands

Figure 2.4: Example of a Terminal Span

shaded ellipses. Rights can flow freely among the nodes in an island by exercising

the take and grant rights or by other operations such as create. The object between

the islands can “hold” a right that can be later taken by a subject from the other

island. In this way, the islands are bridged by a span.

There are two types of spans in the Take-Grant model; terminal and initial.

A terminal span consists of a series of one or more take rights in the same direction

as seen in Figure 2.4. Take rights that are not all in the same direction as the

ones in Figure 2.5 are not terminal spans. Terminal spans allow a right to flow in

Figure 2.5: Example of a Non-Terminal Span

16

Figure 2.6: Example of an Initial Span

Figure 2.7: Example of a Non-Initial Span

the reverse order of the directional edges over both subjects and objects through

successive take operations. Initial spans consist of a single grant preceded by zero or

more take rights all in the same direction such as seen in Figure 2.6. Once again, the

direction of the edges matter. Figure 2.7 is not an initial span. Initial spans are able

to transfer rights in the same direction as the edges over both subjects and objects

by a succession of take operations which transfer the grant to a node, followed by a

final grant operation.

By analyzing islands and two kinds of spans, it can be decided whether a right

can be obtained by a subject. Thus, system safety can be established. Predicates

determine whether a subject can share or steal rights in the system. These predicates

first determine whether the rights exist, and then rely on the presence of spans and

islands to determine the potential movements of the rights. Sharing occurs when a

subject grants a specified right to a subject or object. The predicate to determine

if such an act could occur is shown in Figure 2.8. The predicate itself returns either

17

• ∃ edge α from x to y in G0

• ∃ edge α from a subject s to y in G0

• ∃ a subject s’ such that s’ = s ∨ s’ terminally spans to s
• ∃ Islands I1...In such that x’ ∈ I1 ∧ s’ ∈ In ∧ a bridge is between Ij and Ij+1

• ∃ a subject x’ such that x’ = x ∨ x’ initially spans to x

Figure 2.8: Take-Grant canShare(α, x, y, G0) predicate

• ¬∃ edge α from x to y in G0

• ∃ subject x’ such that x’ = x or x’ initially spans to x
• ∃ subject s with α over y in G0 ∧ canShare(t, x, s, G0)

Figure 2.9: Take-Grant canSteal(α, x, y, G0) predicate

true or false and takes as parameters the right α, x a subject or object, y a subject

or object, and the current state of the graph G0. The function returns true if and

only if x can obtain α rights over y by evaluating the specified conditions.

Rights can also be “stolen” in Take-Grant, that is, obtained without an original

owner granting the right. This is also determined by the predicate in Figure 2.9.

Once again the parameters are the right in question α, entities x, and y, and the

current state of the graph G0. The function returns true if and only if x can obtain

α rights to y based on the specified conditions. While the take-grant model can

successfully model simple policies, it cannot model more robust implementations.

For this reason, it too is not suitable for analysis of complex systems.

2.4 Schematic Protection Model

The Access Control Matrix, while general, lacks the ability to decide the safety

of an arbitrary system. The Take-Grant Model analyzes safety only for simple poli-

cies. Therefore, the Schematic Protection Model was developed. It has many similar-

18

ities with the preceeding models but can analyze the safety of more robust policies.

The followed summary is largely from [San88].

Like previous models the Schematic Protection Model has two entity types;

subjects and objects; however, it also has protection types. A protection type is set

when an entity is created, cannot be changed, and determines the way rights affect

an entity. For example, an entity Alice is of entity type subject and protection type

user. These types determine how an entity interacts with other entities and what

effect rights have on them as defined within the model specification. A function, τ(),

takes the entity name as a parameter and returns its protection type. For example

τ(Alice) returns user.

A right held over a particular entity is called a ticket and is denoted as X/r

where X is the target entity and r is a right from the set defined in the model

specification. The set of tickets an entity currently holds determines its domain and

is returned by the function dom(X). Rights are divided into two categories: those

which can affect the safety of the system such as the take right in the Take-Grant

Model and those which do not such as a read right. These are called control and

inert rights respectively. These sets do not overlap and constitute all rights specified

in the model. A “copy” flag, in part, determines whether rights can be shared. For

example the right r includes the ability to exercise the r right but not share it. The

right rc is the same right with a copy flag allowing the right to be shared assuming

19

other required conditions hold. Finally, the right r:c refers to both the ability to

share and use the right.

Links connect entities within the Schematic Protection Model. Links are de-

termined by the existence of control rights in the domains of entities. A link exists

between nodes X and Y if and only if a conjunction or disjunction of one or more

of the following statements is true where right z is a control right.

• X/z ∃ dom(X)

• X/z ∃ dom(Y)

• Y/z ∃ dom(X)

• Y/z ∃ dom(Y)

• true

A link is denoted by a function linki(X, Y) where X and Y are formal parameters

representing entities and is evaluated as true or false. For this reason, any time the

domains of two entities support a link between themselves, one exists. The universal

link, if true, denotes that there is a link between all entities in the model. Links are

established between entities, while filters limit the flow of tickets in the Schematic

Protection Model. Filters are defined between the protection types of two entities,

and each is associated with a link. Filters specify the set of tickets that can pass over

a given link. Filters perform a Mandatory Access Control function on the transfer of

tickets. A filter may allow the transfer of all to no tickets. For example filter fi(user,

user) = {all inert rights} limits the transfer of rights between protection type users

20

to only inert rights. This, then, excludes the transfer of any control rights from user

to user over a particular link.

Similar to the Take-Grant Model, the transfer of tickets in SPM is decidable.

For example if a ticket X/r:c can be copied from dom(Y) to dom(Z) all three of the

following conditions must be met

• X/rc ∃ dom(Y),

• linki(Y, Z), and

• τ(X)/r:c ∃ fi(τ(Y), τ(Z)).

The addition of the filter, made possible by the protection types, distinguishes the

Schematic Protection Model from the Take-Grant Model and increases the expressive

power of the model. The Take-Grant Model can be specified in SPM without filters;

however, it is filters that increase the specification power of the Schematic Protection

Model and ultimately can prevent the transfer of the entire set of tickets when a link

exists if desired. Similar to the previous models, Attenuation of Privilege also applies.

An entity cannot transfer tickets it does not possess. A ticket must come from an

entity’s domain and cannot be given arbitrarily.

Creation of entities is regulated by a set of rules within the specification of

the model. These rules determine what protection types can be created by other

protection types and specify what tickets are obtained upon creation. When creating

entities, tickets are specified for both the parent (the creator) and child node (the

created). Cyclic creates are not permitted in the graph of the Schematic Protection

21

Model. That is, if entity of type A creates a type B and the entity type B creates an

entity C, The entity C is not allowed to create an entity of type A. The specification

of the create rules are in set form specifying the type of the parent first followed by

the type of the child. An example can create rule in a model looks like cc = {(user,

file),(user, program), (user, user)}. This specification allows an entity of protection

type user to create a file, program or another user. Newly created entities cannot

be more powerful than the parent entity.

The Schematic Protection Model does not allow the deletion of entities, but it

does capture the decidability of the transfer of tickets within the model. It also is

detailed enough to capture more realistic scenarios than the Take-Grant Model. For

these reasons, it is worthy of further investigation and is the focus of this effort.

2.5 Automated Theorem Provers

Automated Theorem Provers are tools that aid in the derivation of mathemat-

ical proofs. While finding proofs has been considered more of an art needing human

thought, automated tools have made great progress and have established themselves

as valuable adjusts to this process. This branch of artificial intelligence has the ob-

jective of determining if a goal follows from a set of axioms [IF01]. Provers apply

inference rules to a given scenario. Solvable systems can be thought of as a finite

state machine that, if specified correctly, has a solution. The challenge then lies

in specifying the problem. Using predicate logic, as discussed previously, theorem

22

provers can find proofs to many theorems that are correctly specified and thus are a

powerful tool.

2.5.1 Symbolic Analysis Laboratory (SAL). The Symbolic Analysis Labo-

ratory is a collection of tools for formal specification, verification, and model check-

ing [LdMS03]. The tools, based on the functional language Scheme, work as a middle

layer to an automated solver. The expressive specification language is similar to the

Prototype Verification System (PVS) [LdMS03]. SAL includes a powerful auto-

mated deduction capability suitable for large formalized proofs. Base types within

the specification language include booleans, integers, reals and user defined types.

Type-constructors in SAL include functions, arrays, tuples, and records. These spec-

ifications are used to specify the Schematic Protection Model. SAL is discussed in

great detail in Chapter 3.

2.6 Current Research

Automated Theorem Provers (ATP) have been used in many research areas.

Research has been conducted using ATP for Computer Algebra Systems (CAS)

[AGLM99]. CAS uses PVS as a module running in the background to provide more

accurate results with symbolic integration. Other research within the realm of com-

puter algebra systems combines Maple, a computer algebra system, and Isabelle, an

ATP, to solve problems that neither could solve independently [BCGH98]. Algebra

systems are designed for computation while automated theorem provers are designed

23

for logical operations. By combining logical evaluation and computational power a

Mechanized Symbolic Computational Systems architecture is formed.

Software verification is a separate field in which ATP have been applied. The

verification and certification of software to meet its specifications is a vast field

with methods ranging from code analysis to full verification. However, the highest

certification levels use ATP and apply logical proofs. In particular, ATP are used in

the verification of aerospace software [DFS06].

ATPs have been applied to computer security as well. Attempts to protect

against side channel attacks including power analysis attacks have used ATP. The

analysis of preventative measures use ATP to prove certain resource properties of

low-level code with the aid of ATP [Sev07]. This approach was effective for programs

not using mutable data structures. Experiments with transformations of generated

verification conditions provable by first order ATP were successful. For example,

to prove the in-place list reversal algorithm’s memory consumption had particular

shape properties, these simple transformations were used. Scalability impacts the

analysis of larger programs. ATP are also applied to other aspects of computer safety.

In particular, the Simple Type Theory (STT) was recently modeled using the ATP

LEO-II to automate the analysis of access control logic [Ben09] and STT translations

of modal logic representing access controls. Access control logic was translated into

modal logic based on [GA08] and embedded within STT and submitted to the ATP

LEO-II. Truth objects and theorems were produced by the ATP.

24

2.7 Summary

In this chapter the importance of computer security and underlying safety of

systems was examined. Propositional and predicate logic were reviewed and shown to

be useful to specify models of computer safety. The Access Control Matrix can model

any security model. Its limitations, notably the lack of decidability were identified.

The Take-Grant Model was introduced with decidability as a key factor. While it

achieves this task, the set of systems it can model is limited. Finally, the Schematic

Protection Model was introduced. SPM is decidable and can represent many more

systems. The use of ATP was examined. The Symbolic Analysis Laboratory was

discussed in some depth. Finally, current research using ATP was discussed.

25

III. Symbolic Analysis Laboratory

3.1 Symbolic Analysis Laboratory

The Symbolic Analysis Laboratory (SAL) [LdMS03] is a collection of tools for

abstraction, program analysis, theorem proving, and model checking. A SAL specifi-

cation includes logic for describing transitions in stateful systems. This specification

is similar to other verification tools such as SMV, Murphi and Mocha using initial-

ization and transition commands [LdMS03]. SAL tools are scripts written in Scheme

that invoke the SAL API.

3.1.1 Tools Included. Each of the tools included provide a different utility

to the Symbolic Analysis Laboratory.

The SAL well-formedness checker (sal-wfc) is the type checker run before other

tools to detect errors in the specification. While it does not detect all errors, it finds

many and is an important step prior to running other tools.

SAL symbolic model checker (sal-smc) is a Binary Decision Diagram (BDD)

based model checker for finite systems. This model checker performs both for-

ward and backward searches and prioritized traversal. SAL deadlock checker (sal-

deadlock-checker) is an auxiliary tool similar to the well-formedness checker for de-

tecting deadlocks in finite state systems. SAL bounded model checker (sal-bmc) is

based on Boolean or propositional satisfiability (SAT) solving. In addition to bug

26

detection and counter example generation, the bounded model checker supports k-

induction for verification. SAL infinite bounded model checker (sal-inf-bmc) is also

based on SAT solving but for infinite systems. It too supports k-induction for ver-

ification of systems. SAL automated test generator (sal-atg) is an auxiliary tool

that uses the model checking tools to automate the generation of input sequences

determined by trap variables.

3.1.2 Specification Language. The SAL language supports built-in types

for booleans, natural numbers, integers, and reals and includes user defined types.

Types are used in the creation of subtype, subrange, array, function, tuple, and

record types. The SAL language shares many of the expressions of the automated

theorem prover Prototype Verification System (PVS) like assignments, transitions,

and modules.

3.1.3 Transition Language. Specifications in SAL are stateful. Transition

statements change state and may cause variables to take on new values. There

are two types of transitions in SAL: the definition and the guarded command. A

specification for a definition may be written as

x′ = x+ 1. (3.1)

This specification states that the next value of x will be one more than the previ-

ous. Similarly, methods, state variables, booleans, arrays, and other types in SAL

27

can be updated and transition to new values. Guarded commands include boolean

statements to determine if a transition should occur, for example

guard→ x′ = x+ 1 (3.2)

says that if the guard is true, the next value of x will be 1 more than the previous.

Multiple assignments may have only one guard.

3.1.4 Modules. Modules within SAL are self-contained specifications of

a system including variables, initialization, and transitions. These systems are an-

alyzed individually or collectively and are synchronous or asynchronous. Modules

include different types of variables including INPUT, LOCAL, GLOBAL, and OUT-

PUT variables which determine the outcome of the system. Input and global vari-

ables are observed variables as they are set externally to the module. Global, out-

put, and local variables are controlled variables and are updated by the module.

A module also includes three main sections when applicable: DEFINITION, INI-

TIALIZATION, and TRANSITION. In the definition section, constant variables are

defined within the specification. The initialization section assigns starting values to

controlled variables that change within the module. Finally, in the transition section

the system state is updated through transition statements previously discussed.

28

3.2 SPM in SAL

The Schematic Protection Model (SPM) is flexible. Therefore, an SPM model

within SAL must also be flexible so new specifications can be easily written. For

this reason and for readability, the design of the research model has been broken into

different files to reconstruct the specification as desired. Most of the changes to a

SPM model occur in the specification file. The SPM model includes a global record

file which defines a shared variable that is used throughout the model. The SPM

entity file is the “driving force” within the model. This context includes transitions

each entity undergoes to reach a maximal state. A helper file contains functions to

simplify transitions. Finally, the controller and SPM file create the system. The

controller initializes the global record and the SPM file includes the System Module.

Within the SPM file, theorems are created for analysis by SAL tools.

3.2.1 SPM Types. The SPMspecs file contains type declarations for the

various parts of the model. This file starts at the lowest specification level building

the SPM structures within SAL. These structures are then used to specify the SPM

specification of interest into a SPM model.

This file contains the declaration of protections types included within the model

as shown in Figure 3.1; in this case, user, superUser and a default type trash. This

last type is not used by entities within the model but must be included for SAL.

Rights include x and the default type null both of which are SPM control rights.

29

SPMspecs: Context =

BEGIN

%%%

%% Specifications of the SPM model

%%%

ProtectionType : TYPE = {user, superUser, trash};

Right: TYPE = {x,null};

ControlRight : Type = {a:Right| a = x OR a = null};

...

Figure 3.1: Protection Types and Rights

...

%%max size of arrays including domains.

maxIndex : NATURAL = 5;

natIndex : Type = [0.. maxIndex];

%%Number of starting nodes in SPM specification

Num_Nodes : nznat = 2;

...

Figure 3.2: Index Creation and Number of Starting Nodes

They are defined by a subtype specification stating that a control right is a type of

right and is a subset of rights.

To bound the system, a “max index” is assigned to the specification as seen in

Figure 3.2. This index affects the model and thus small values are desirable to reduce

computation time. The max index is used to create a type that serves as an index

throughout the model. This index is used in the array of create rules, filters, tickets

within an entity’s domain and true links within the system. SPMspecs also declares

how many starting nodes the specification includes. Create rules are specified as

shown in Figure 3.3. A create rule is a tuple of two protection types; the first being

that of the creator and the second being the type created. SPM does not allow rules

30

...

%%Can Create

Can_Create_Entry : Type = [ProtectionType, ProtectionType];

Can_Create_Entries : ARRAY natIndex OF Can_Create_Entry =

[[i:natIndex]

IF i = 0 THEN (superUser, user)

ELSE (trash, trash) ENDIF];

Size_CC : natIndex = 1;

Max_Active : NATURAL = Num_Nodes * (1+Size_CC);

Node_Index : Type = [1..Max_Active];

...

Figure 3.3: Create Rules

...

NodeProTypes: Array Node_Index of ProtectionType =

[[i: Node_Index]

IF i = 1 THEN superUser

ELSIF i = 2 THEN user

ELSE trash ENDIF];

...

Figure 3.4: Starting Entities

to include cyclic creates. In this specification, there is one create rule: an entity of

protection type superUser can create an entity of type user. The following section

calculates the maximum number of entities in the system to create an index type

based on the number of starting nodes and the number of create rules. This number

serves as an upper bound for the system. In Figure 3.4 the expression specifies the

protection type of the starting entities. The first node is of type superUser and the

second is of type user. The number of specifications here must be consistent with

the number of nodes declared previously.

31

...

CreateID: Type = {Creator, created};

%% Boolean is copy Flag

CreateRight: Type = [Right, BOOLEAN, CreateID];

NoCreateRights: ARRAY natIndex OF CreateRight =

[[i:natIndex] (null, FALSE, Creator)];

CreateRightsFirst: ARRAY natIndex OF CreateRight = [[i: natIndex]

IF i = 0 THEN (x, TRUE, Creator)

ELSE (null, FALSE, Creator) ENDIF];

CreateRights: ARRAY natIndex OF ARRAY natIndex OF CreateRight=

[[i: natIndex]

IF i = 0 THEN CreateRightsFirst

ELSE NoCreateRights ENDIF];

size_Create_Rights: Array natIndex OF natIndex = [[i:natIndex]

IF i = 0 THEN 1

ELSE 0 ENDIF];

...

Figure 3.5: Create Rights

Figure 3.5 declares the rights that are placed in an entity’s domain once an

entity is created. Each create rule from Figure 3.3 has a list of rights to be given

to the creator and created entity. The tickets corresponding to these rights are

determined during the create process. The CreateRight type specifies which right

is granted, if the entity has the ability to copy it, and finally if the creator or the

created entity are granted the ticket. When the create rule from Figure 3.3 is used,

the creator receives a copyable version of x right over the newly created entity in

the form of a ticket. The rights must be placed into the correct array structure of

CreateRights and the size of each of those arrays recorded.

Tickets are an important aspect of SPM. The specification in Figure 3.6 shows

how a Ticket is represented in SAL. A ticket is a tuple type consisting of a node

32

...

Ticket : Type = [Node_Index, Right, BOOLEAN];

EmptyDomain: ARRAY natIndex OF Ticket = [[i : natIndex]

(1, null, FALSE)];

...

Figure 3.6: Ticket

...

%%Links

U_Link: BOOLEAN = TRUE;

...

Figure 3.7: Universal Link

index, the right over that entity, and a boolean copy flag. Also declared is an empty

domain for future use.

The universal link within the specification of Figure 3.7 is not dependent on

a ticket. If this boolean is true, all entities within the specification are connected

pairwise. In this specification a universal link exists between all entities.

Filters specified within the system are also a tuple type as seen in Figure 3.8.

They are the most complex structure within the specification and consist of many

pieces. Filters always determine what tickets can flow from left to right. The first

entity is X and the second is denoted Y. These are formal parameters meaning they

can be any entity within the specification. The first two values of a filter are the

protection types of both X and Y respectively. The next value determines the right

contained within the ticket that can be shared followed by a boolean determining

whether a copyable version of the ticket can pass. The remaining three values links

a Filter with a Link within the specification. Chapter 2 discussed the formal specifi-

33

...

%%Filters

TicketEntity : Type = {X, Y, Conjunction};

%% Link(X,Y) = TicketEntity/right Exists dom(X), Exists dom(Y)

%% From Protection Right, To Protection Type,

%% The right sharing, copy flag can pass?,

%% TicketEntity of control ticket,

%% control right in X dom, control right in Y dom

Filter : Type = [ProtectionType, ProtectionType,

Right, BOOLEAN, TicketEntity,

ControlRight, ControlRight];

Filters : ARRAY natIndex OF Filter = [[i:natIndex]

IF i = 0 THEN (superUser, user, x, TRUE, Y, null, null)

ELSIF i = 1 THEN (user, superUser, x, TRUE, Y, null, null)

ELSIF i = 2 THEN (user, user, x, TRUE, Y, x, null)

ELSE (trash, trash, null, FALSE, X, null, null) ENDIF];

Size_Filters : natIndex = 3;

...

Figure 3.8: Filters

cation of control links. Examples of some of the possible control rights as presented

in [San88] are shown below.

link(X, Y) ≡ Y/g ∃ dom(X) (3.3)

link(X, Y) ≡ X/t ∃ dom(Y) (3.4)

link(X, Y) ≡ Y/s ∃ dom(X) ∧ X/r ∃ dom(Y) (3.5)

link(X, Y) ≡ X/b ∃ dom(X) (3.6)

link(X, Y) ≡ Y/p ∃ dom(Y) (3.7)

34

These equations and the formal specification show that the presence of a link is

determined by the presence of tickets within the dom(X), dom(Y). Equations 3.3

and 3.4 model a Take-Grant scheme. Equations 3.5 - 3.7 specify a send and receive

model where entities must each contain control rights for a link to exist, and rights

such as a broadcast and pickup right where a ticket held by an entity over itself allows

a link to exist to all other entities or a link to exist from all other to the current

entity, respectively. To make the implementation of links and filters general, the

following scheme has been developed. The last three values of the filter associate it

to a specific link. These three values specify what domain must contain a ticket and

over which entity is the ticket held. The TicketEntity defined in the filter specifies,

similar to the above equations, what entity the ticket applies to. For example, in

(3.3) TicketEntity would be Y while in (3.4) the TicketEntity would be X. Finally,

the third possibility is seen in (3.5) where a control right must be present in both

domains. In this case the value assigned is conjunction. The last two values of the

specified filter are the control rights needed contained by the dom(X) and dom(Y)

respectively.

This system includes 3 filters. All three links allow the passage of the copy

flag. The first two are declared for the universal link and the last is for the ticket

Y/x in the sharing entity’s domain.

The final section, found in Figure 3.9, declares what tickets, if any, are in the

respective domains. In this specification, the first domain contains one ticket over

35

...

firstDomain : ARRAY natIndex OF Ticket = [[i:natIndex]

IF i = 0 THEN (2, x, TRUE)

ELSE (1, null, FALSE) ENDIF];

EntityDomains : ARRAY Node_Index OF ARRAY natIndex OF

Ticket=[[i: Node_Index]

IF i = 1 THEN firstDomain

ELSE EmptyDomain ENDIF];

DomainSizes : ARRAY Node_Index OF NATURAL = [[i: Node_Index]

IF i = 1 THEN 1

ELSE 0 ENDIF];

end

Figure 3.9: Domains

entity 2. All other domains are empty and have a domain size of 0. This concludes

the specification file for the current model.

3.2.2 System State. Within the specification of SPM, the current state of

the system must be set. This state includes the domains of the entities, and many

of the specifications made within the previously discussed file. For the state to be

updated easily and to allow entities to add tickets to other domains by sharing or

creating, state changes are made to the same variable. For this reason, the system

shares one global variable that contains the state of the specification. The SAL record

type in Figure 3.10 contains the state variables of the SPM entities and the system.

The dom is an array of domains - one for each entity within the specification. The

Size Dom is an array of the number of tickets in each of those domains. The ProType

array is the protection type of each of the entities again in an array. Max shared is

36

globalrecord:context=

BEGIN

%%%

%% Global Resource

%% This record holds the variables of all the SPM entities and

%% represents the state of the system.

%%%

IMPORTING SPMspecs;

SysNodes: TYPE = [#

dom: ARRAY Node_Index OF ARRAY natIndex OF Ticket,

Size_Dom: ARRAY Node_Index OF natIndex,

ProType: ARRAY Node_Index OF ProtectionType,

Max_shared: ARRAY Node_Index OF BOOLEAN,

Num_Nodes: Node_Index #];

end

Figure 3.10: Global Record

a boolean array that determines if an entity has shared all of its tickets with other

entities. This is important as it changes not only when an entity shares but also when

a different entity shares a new ticket with the current entity. Finally, Num Nodes

contains the current number of the nodes created. This value tracks the last entity

created within the system.

3.2.3 SPM Entity Functions. This file contains functions called from an

entity to create entities and share tickets. These functions update the system and

navigate through the transition section of each entity as it approaches maximal

state. The functions found in Figure 3.11 update local variables within the entity.

The indexes iterate through arrays within the specification of finite indexes. These

37

helper:context =

BEGIN

IMPORTING SPMspecs;

IMPORTING globalrecord;

%%%

inc_Index (i : natIndex):natIndex =

IF i < maxIndex THEN i + 1

ELSE i ENDIF;

inc_Num_Nodes (i : Node_Index):Node_Index =

IF i < Max_Active THEN i + 1

ELSE i ENDIF;

...

Figure 3.11: Increment Indexes

functions prevent “run away” values by checking the maximum value allowed before

increasing the current value.

The can share function in Figures 3.12, 3.13, and 3.14 provides much of the

logic within the transition section. Figure 3.12 checks for the copy flag and deter-

mines the presence of a universal link and the corresponding filter to allow a ticket

transfer. In Figure 3.13 the function searches for a control link established by a

right in either domain and a filter that allows a ticket to be shared. Finally, Fig-

ure 3.14 checks for a link requiring both entities to have a ticket. This function

returns a boolean determining whether the ticket can be shared in any of these

ways. Figure 3.15 is broken into its own function due to its transition outcome. It

determines the final case of the presence of a control link and filter.

Figure 3.16 shows a function that updates a specified domain by including

a shared ticket. It also increases the size of the domain and sets the max shared

38

...

Can_Share?(X_index : Node_Index, Y_index : Node_Index,

sysNodes : SysNodes, ticket : Ticket) : BOOLEAN =

%% Copy Flag

IF ticket.3 AND

%% destination domain contains?

NOT EXISTS(i:natIndex):

(sysNodes.dom[Y_index][i].1 = ticket.1 AND

sysNodes.dom[Y_index][i].2 = ticket.2)

THEN

%% universal link

IF U_Link AND

EXISTS(index:{i: natIndex| i < Size_Filters}):

(Filters[index].1 = sysNodes.ProType[X_index] AND

Filters[index].2 = sysNodes.ProType[Y_index] AND

Filters[index].3 = ticket.2 AND

Filters[index].4 = ticket.3 AND

Filters[index].6 = null AND

Filters[index].7 = null)

THEN TRUE

...

Figure 3.12: Can Share Part 1

39

...

ELSIF

EXISTS(dom_index:natIndex):

EXISTS(filter_index:{i:natIndex| i< Size_Filters}):

%% grant-like

((Filters[filter_index].1 = sysNodes.ProType[X_index] AND

Filters[filter_index].2 = sysNodes.ProType[Y_index] AND

Filters[filter_index].3 = ticket.2 AND

Filters[filter_index].4 = ticket.3 AND

Filters[filter_index].5 = Y AND

Filters[filter_index].6 = sysNodes.dom[X_index][dom_index].2 AND

Filters[filter_index].7 = null)

OR

%% take-like

(Filters[filter_index].1 = sysNodes.ProType[X_index] AND

Filters[filter_index].2 = sysNodes.ProType[Y_index] AND

Filters[filter_index].3 = ticket.2 AND

Filters[filter_index].4 = ticket.3 AND

Filters[filter_index].5 = X AND

Filters[filter_index].6 = null AND

Filters[filter_index].7 = sysNodes.dom[Y_index][dom_index].2)

OR

%% broadcast-like

(Filters[filter_index].1 = sysNodes.ProType[X_index] AND

Filters[filter_index].2 = sysNodes.ProType[Y_index] AND

Filters[filter_index].3 = ticket.2 AND

Filters[filter_index].4 = ticket.3 AND

Filters[filter_index].5 = X AND

Filters[filter_index].6 = null AND

Filters[filter_index].7 = sysNodes.dom[X_index][dom_index].2))

THEN TRUE

...

Figure 3.13: Can Share Part 2

40

ELSIF

%% Conjunction

EXISTS(Xdom_index:natIndex):

EXISTS(Ydom_index:natIndex):

EXISTS(filter_index:{i:natIndex| i<Size_Filters}):

(Filters[filter_index].1 =

sysNodes.ProType[X_index] AND

Filters[filter_index].2 =

sysNodes.ProType[Y_index] AND

Filters[filter_index].3 = ticket.2 AND

Filters[filter_index].4 = ticket.3 AND

Filters[filter_index].5 = Conjunction AND

Filters[filter_index].6 =

sysNodes.dom[X_index][Xdom_index].2 AND

Filters[filter_index].7 =

sysNodes.dom[Y_index][Ydom_index].2)

THEN TRUE

ELSE FALSE ENDIF

ELSE FALSE ENDIF;

...

Figure 3.14: Can Share Part 3

Can_Share_Pickup?(X_index : Node_Index, Y_index : Node_Index,

sysNodes : SysNodes, ticket : Ticket) : BOOLEAN =

%% Pickup

EXISTS(dom_index:natIndex):

EXISTS(filter_index:{i:natIndex| i<Size_Filters}):

(Filters[filter_index].1 = sysNodes.ProType[X_index] AND

Filters[filter_index].2 = sysNodes.ProType[Y_index] AND

Filters[filter_index].3 = ticket.2 AND

Filters[filter_index].4 = ticket.3 AND

Filters[filter_index].5 = X AND

Filters[filter_index].6 =

sysNodes.dom[X_index][dom_index].2 AND

Filters[filter_index].7 = null);

...

Figure 3.15: Can Share pickup

41

...

Update_Share(Y_index : Node_Index,

sysNodes : SysNodes, ticket : Ticket,

resetAll: BOOLEAN): SysNodes =

IF resetAll

THEN sysNodes

WITH .dom[Y_index][sysNodes.Size_Dom[Y_index]]:= ticket

WITH .Size_Dom[Y_index]:= inc_Index(sysNodes.Size_Dom[Y_index])

WITH .Max_shared := [[n: Node_Index] FALSE]

ELSE

sysNodes

WITH .dom[Y_index][sysNodes.Size_Dom[Y_index]] := ticket

WITH .Size_Dom[Y_index]:= inc_Index(sysNodes.Size_Dom[Y_index])

WITH .Max_shared[Y_index]:= FALSE

WITH .Max_shared[ticket.1]:= FALSE

ENDIF;

...

Figure 3.16: Update Domain (Sharing)

boolean to false for both the entity receiving the ticket and the entity specified within

the ticket as these entities now may be permitted to share more tickets. If a right

similar to a “pickup” right is shared, all entities no longer are max shared as specified

in the first case. Figure 3.17 contains the logic each node will undergo to share a

ticket during the sharing process. It is a simplification of the entity that will soon

be discussed.

The function in Figure 3.18 updates the domain of an entity when a new entity

is created. The can create function in Figure 3.19 determines if an entity can create

using a specific create rule. These functions are simplifications of the transitions

within the entity specification. By declaring them individual functions, the system

is simplified and duplicate code is avoided.

42

...

share_ticket(node_index:Node_Index, share_node_index:Node_Index,

sysNodes:SysNodes, share_dom_index: natIndex):SysNodes =

IF Can_Share?(node_index, share_node_index, sysNodes,

sysNodes.dom[node_index][share_dom_index])

THEN Update_Share(share_node_index,

sysNodes, sysNodes.dom[node_index][share_dom_index], FALSE)

ELSIF Can_Share?(node_index, share_node_index, sysNodes,

(sysNodes.dom[node_index][share_dom_index].1,

sysNodes.dom[node_index][share_dom_index].2, FALSE))

THEN Update_Share(share_node_index,

sysNodes, (sysNodes.dom[node_index][share_dom_index].1,

sysNodes.dom[node_index][share_dom_index].2,

FALSE), FALSE)

ELSIF Can_Share_Pickup?(node_index, share_node_index, sysNodes,

sysNodes.dom[node_index][share_dom_index])

THEN Update_Share(share_node_index,

sysNodes, sysNodes.dom[node_index][share_dom_index], TRUE)

ELSIF Can_Share_Pickup?(node_index, share_node_index, sysNodes,

(sysNodes.dom[node_index][share_dom_index].1,

sysNodes.dom[node_index][share_dom_index].2, FALSE))

THEN Update_Share(share_node_index,

sysNodes, (sysNodes.dom[node_index][share_dom_index].1,

sysNodes.dom[node_index][share_dom_index].2,

FALSE), TRUE)

ELSE sysNodes ENDIF;

Figure 3.17: Share Ticket

...

update_sys(sysNodes: SysNodes, created: Node_Index,

creator: Node_Index, right: Right): SysNodes =

sysNodes

WITH .dom[creator][sysNodes.Size_Dom[creator]] :=

(created, right, TRUE)

WITH .Size_Dom[creator] :=

inc_Index(sysNodes.Size_Dom[creator]);

...

Figure 3.18: Update System (Creating)

43

...

can_create?(creator_Protype: ProtectionType,

Create_index: natIndex,

Can_Creates : ARRAY natIndex OF Can_Create_Entry,

size_Can_Create: natIndex):BOOLEAN =

IF size_Can_Create = 0

THEN FALSE

ELSE (creator_Protype = Can_Creates[Create_index].1)

ENDIF;

END

Figure 3.19: Can Create

3.2.4 Entity Specification and Maximal State. An entity in the Schematic

Protection Model is a reoccurring structure captured in SAL as a module. These

modules contain logic to drive the transitions of the system. SPM theorems show

that a maximal state exists for systems with acyclic creates. This state is reached

by exercising all create rules for each of the original entities. Next, entities share all

tickets that can be shared with current links and filters. This process continues until

entities have shared all of the sharable tickets with each other. Notice that once a

new ticket is received, an entity is no longer at a maximal state and must attempt to

share with all entities again. In this way, the system eventually reaches a maximal

state. These changes are driven by the Node module within the transition logic.

Figure 3.20 is the beginning of the entity specification. An entity can be in

several states specified in the type including sharing, creating, maximal, and inactive.

Each node takes two parameters to initialize - the node index to identify it and the

boolean original to determine if it is a starting node. The global variable containing

44

SPM_entity:context =

begin

%%%

%% Node Module

%%%

IMPORTING SPMspecs;

IMPORTING globalrecord;

IMPORTING helper;

%%%

Node_State : Type = {sharing, creating, maximal, inactive};

Node[node_index : Node_Index, original_node: BOOLEAN] : MODULE=

BEGIN

GLOBAL sysNodes: SysNodes

local original : BOOLEAN

local have_created : BOOLEAN

local entity_state: Node_State

local create_rule_index: natIndex

local create_right_index: natIndex

local created_index: Node_Index

local share_node_index: Node_Index

local share_dom_index: natIndex

INITIALIZATION

original = original_node;

have_created = FALSE;

entity_state = inactive;

create_rule_index = 0;

create_right_index = 0;

created_index = 1;

share_node_index = 1;

share_dom_index = 0;

...

Figure 3.20: Entity Variables and Initialization

45

...

TRANSITION

[

%%No Create Rules

no_create_rules:

(original AND NOT (have_created) AND

Size_CC = 0)

--> entity_state’ = creating;

have_created’ = TRUE

[]

...

Figure 3.21: No Create Rules Transition

the system state is sysNodes. The local variables determine what transition the

entity is in and are first declared and then initialized.

The transitions within the system are declared in the transitions section. Tran-

sitions determine what changes to the entity occur next; multiple are needed to han-

dle different states. Because only static recursion is supported within SAL, functions

that would recurse to a dynamic array size must be “unrolled” and included as dif-

ferent transitions. Figure 3.21 begins the Transition section for a system with no

create rules. This allows starting entities to transition immediately into the sharing

phase. Figure 3.22 contains one of the transitions for an entity. This transition

handles the last create rule specified and placement of the last create’s ticket. This

condition is determined before the arrow symbol. If the guard is true, then the

transition is made and definition statements to update the state of the entity and

global system follow. This is the case for each transition. The two transitions in

Figures 3.23 and 3.24 complete the specifications needed for the create process of the

46

...

%% Last rule

%% Last Right

creating_if_final_rule_and_final_right:

(original AND NOT (have_created) AND

(create_rule_index = Size_CC-1) AND

create_right_index = (size_Create_Rights[create_rule_index]-1))

--> entity_state’ = creating;

sysNodes’ =

IF can_create?(sysNodes.ProType[node_index],

create_rule_index, Can_Create_Entries, Size_CC)

THEN update_create(sysNodes, created_index,

node_index,

CreateRights[create_rule_index][create_right_index])

WITH .ProType[inc_Index(sysNodes.Num_Nodes)] :=

Can_Create_Entries[create_rule_index].2

WITH .Max_shared[node_index] := FALSE

ELSE sysNodes ENDIF;

have_created’ = TRUE

[]

...

Figure 3.22: Last Create Transition

47

...

%% ANY Rule

%% Not last right

Creating_if_final_create_rule:

(original AND NOT (have_created) AND

create_right_index < (size_Create_Rights[create_rule_index]-1))

--> entity_state’ = creating;

created_index’ =

IF (create_rule_index = 0 AND create_right_index = 0)

THEN inc_Index(sysNodes.Num_Nodes)

ELSE created_index ENDIF;

sysNodes’ =

IF (create_rule_index = 0 AND create_right_index = 0)

THEN IF can_create?(sysNodes.ProType[node_index],

create_rule_index, Can_Create_Entries, Size_CC)

THEN update_create(sysNodes,

inc_Index(sysNodes.Num_Nodes),

node_index,

CreateRights[create_rule_index][create_right_index])

WITH .Num_Nodes := inc_Index(sysNodes.Num_Nodes)

ELSE sysNodes ENDIF

ELSE IF can_create?(sysNodes.ProType[node_index],

create_rule_index, Can_Create_Entries, Size_CC)

THEN update_create(sysNodes, created_index,

node_index,

CreateRights[create_rule_index][create_right_index])

ELSE sysNodes ENDIF

ENDIF;

create_right_index’ = inc_Index(create_right_index);

[]

...

Figure 3.23: Create Transition Part 1

48

...

%% Not Last Rule

%% Last Right

creating_else_case_right_reset:

(original AND not (have_created) AND

(create_rule_index < Size_CC-1) AND

create_right_index = (size_Create_Rights[create_rule_index]-1))

--> entity_state’ = creating;

sysNodes’ =

IF can_create?(sysNodes.ProType[node_index],

create_rule_index, Can_Create_Entries, Size_CC)

THEN update_create(sysNodes, created_index,

node_index,

CreateRights[create_rule_index][create_right_index])

ELSE sysNodes ENDIF;

create_rule_index’ = inc_Index(create_rule_index);

create_right_index’ = 0;

[]

...

Figure 3.24: Create Transition Part 2

entity. These transitions iterate through the create rules and placement of tickets to

ensure all possible create rules are used and that all tickets are granted following a

create. Ticket sharing occurs and the maximal state follows.

Similar to Figure 3.22, Figure 3.25 is the last transition for sharing tickets.

Also included is the transition “max shared” for an entity with no tickets in its

domain. Included within this transition and those that follow is the attempt to first

share a ticket with the copy flag and then without. While the copy flag is required to

share a ticket, the filter present for a link may not allow it to pass. Since this is the

sharing of the final ticket to the last active node, following this step, the entity has

shared all of its tickets and therefore, Max shared is update to TRUE. Figure 3.26

49

%%%

%% Sharing of All Tickets

%% Node Max_shared is False and the node has created in all cases

%%%

sharing:

%% No Tickets in Domain

(NOT (sysNodes.Max_shared[node_index]) AND

IF original THEN (have_created) ELSE TRUE ENDIF AND

(sysNodes.Size_Dom[node_index] = 0))

--> entity_state’ = sharing;

sysNodes’ = sysNodes

WITH .Max_shared[node_index] := TRUE;

[]

sharing:

%%Last Node

%% Last Right

(NOT (sysNodes.Max_shared[node_index]) AND

IF original THEN (have_created) ELSE TRUE ENDIF AND

(share_node_index = sysNodes.Num_Nodes) AND

(share_dom_index = (sysNodes.Size_Dom[node_index]-1)))

--> entity_state’ = sharing;

sysNodes’ = share_ticket(node_index, share_node_index,

sysNodes, share_dom_index)

WITH .Max_shared[node_index] := TRUE;

share_node_index’ = 1;

share_dom_index’ = 0;

[]

...

Figure 3.25: Sharing Last Ticket

50

...

sharing:

%% ANY Node

%% Not Last Right

(NOT (sysNodes.Max_shared[node_index]) AND

IF original THEN (have_created) ELSE TRUE ENDIF AND

(share_dom_index < (sysNodes.Size_Dom[node_index]-1)))

--> entity_state’ = sharing;

sysNodes’ = share_ticket(node_index, share_node_index,

sysNodes, share_dom_index);

share_dom_index’ = inc_Index(share_dom_index);

[]

...

Figure 3.26: Sharing Transition Any Node

sharing:

%% Not Last Node

%% Last Right

(NOT (sysNodes.Max_shared[node_index]) AND

IF original THEN (have_created) ELSE TRUE ENDIF AND

(share_node_index < sysNodes.Num_Nodes) AND

(share_dom_index = (sysNodes.Size_Dom[node_index]-1)))

--> entity_state’ = sharing;

sysNodes’ = share_ticket(node_index, share_node_index,

sysNodes, share_dom_index);

share_dom_index’ = 0;

share_node_index’ = inc_Num_Nodes(share_node_index);

[]

...

Figure 3.27: Sharing Transition Last Right

51

...

[]

%%

maximal_state:

(sysNodes.Max_shared[node_index] AND

IF original THEN (have_created) ELSE TRUE ENDIF)

--> entity_state’ = maximal

]

END;

end

Figure 3.28: Maximal State Transitions

and Figure 3.27 contain two transitions to handle all other cases while an entity

is sharing its tickets. Similar to the Creates, these transitions iterate through the

current entities domain and the other active entities within the system ensuring all

tickets are shared.

Finally, Figure 3.28 is the transition that is a “holding pattern” for an entity.

Because the addition of a new ticket into an entity’s domain means it is no longer in

the maximal state, this transition keeps the entity active as it waits for other entities

to reach maximal state.

3.2.5 Controller and System. To initialize the system and test current

specifications, the controller and system are created. The Controller simply initializes

the global variable using the values specified by the specification file. System, then, is

composed of one controller module to start the system and the maximum number of

entities the specification can reach as calculated in the specifications. The controller

52

controller:context =

begin

IMPORTING SPMspecs;

IMPORTING globalrecord;

%%%

%% Controller module will begin specification of system by

%% initializing the global variable.

%%%

Controller : module =

BEGIN

GLOBAL sysNodes: SysNodes

INITIALIZATION

sysNodes = (# dom:= EntityDomains,

Size_Dom := DomainSizes,

ProType := NodeProTypes,

Max_shared := [[n: Node_Index] FALSE],

Num_Nodes := Num_Nodes #);

END;

end

Figure 3.29: Controller

53

SPM: Context =

BEGIN

%%

%% System Module

%% Starts one instance of the Controller and Node_Index of the Node

%%

IMPORTING SPMspecs;

IMPORTING globalrecord;

IMPORTING SPM_entity_exploded;

IMPORTING controller;

System: module =

Controller

[]

([] (node_index : Node_Index) : Node_2[node_index,

(node_index <= Num_Nodes)]);

%%

th1: THEOREM System |- FORALL(i:Node_Index):G(original[i] =>

F(have_created[i]));

END

Figure 3.30: SPM System

in Figure 3.29 assigns the global system variable values from the specification file

and creates the model as specifed.

Figure 3.30 contains the SPM specification. The SPM file has the highest

context and is called to run the specification tools. The module contained, System,

starts an instance of the controller to initialize the system and as many nodes as

necessary. This file is also the location where theorems to be run on the specification

are placed.

54

Figure 3.31: Take-Grant Starting State

Figure 3.32: Take-Grant Ending State

3.3 Validation

Different SPM models can be created and studied using the SAL files as the

specifications files can be adapted to analyze any SPM specification. SAL theorems

are then specified within the SPM file. Safety properties can be checked and the

strengths of a given protection scheme verified. To demonstrate the usability of the

SAL specification and validate the model, a Take-Grant model is specified. The

Take-Grant model is used due to its simplicity and widespread acceptance.

3.3.1 Take-Grant Model. The model selected is simple, having only two

nodes as seen in Figure 3.31. This graph represents the starting state of the Take-

Grant specification with only entity 1 having the x right over entity 2. Figure 3.32

is the expected outcome of the specification based on how the Take-Grant model

behaves and the presence of a create rule in the specification.

55

SPMspecs: Context =

BEGIN

%%%

%% Specifications of the SPM model

%%%

ProtectionType : TYPE = {subject, object, trash};

Right: TYPE = {x,t,g,null};

ControlRight : Type = {a:Right| a = t OR a = g OR a = null};

...

Figure 3.33: Take-Grant Types

Figure 3.33 begins the specification of the Take-Grant Model. The model

includes the protection types of subject and object. Rights include x, a right repre-

senting inert rights to an object; t, the “take” control right and g, the “grant” control

right. The Take-Grant specification starts with two original nodes and contains a

create rule allowing subjects to create an object as seen in Figure 3.34

Figure 3.35 specifies the protection types of the three starting nodes. Node 1

is a subject, and node 2 is an object. Also in Figure 3.35 are the rights for the create

rule for the system. The creator in the case gets two tickets: one with the x right

and the other with the g right over the newly created entity both with the copy flag

set to true as Take-Grant does not differentiate between copyable and non-copyable

rights.

Next is the specification of links and filters within the Take-Grant Model.

Figure 3.36 contains these specifications. There are no default links in a Take-Grant

Model - only control links determined by presence of rights. Therefore, the universal

link is false. Filters in the system show the abilities of the control links. The t

56

...

%%max size of arrays including domains.

maxIndex : NATURAL = 4;

natIndex : Type = [0.. maxIndex];

%%Number of starting nodes in SPM specification

Num_Nodes : nznat = 2;

%%Can Create

Can_Create_Entry : Type = [ProtectionType, ProtectionType];

Can_Create_Entries : ARRAY natIndex OF Can_Create_Entry =

[[i:natIndex]

IF i = 0 THEN (subject, object)

ELSE (trash, trash) ENDIF];

Size_CC : natIndex = 1;

Max_Active : NATURAL = 3;

Node_Index : Type = [1..Max_Active];

...

Figure 3.34: Take-Grant Starting Nodes and Create Rules

and g rights allow entities to “pull” and “push” rights respectively. Notice also the

limitations of the object protection type. It can not exercise “t” or “g” as it is not

an active type in the Take-Grant Model. The specification of the Take-Grant Model

concludes with Figure 3.37. Here the starting tickets in the domains are created.

The first entity of type subject has one ticket with the right x over the second entity

of type object and therefore a link “x” to it This creates the edge in the graph from

entity 1 to entity 2.

3.3.2 Theorems.

57

...

NodeProTypes: Array Node_Index of ProtectionType =

[[i: Node_Index]

IF i = 1 THEN subject

ELSIF i = 2 THEN object

ELSE trash ENDIF];

CreateID: Type = {Creator, created};

%% Boolean is copy Flag

CreateRight: Type = [Right, BOOLEAN, CreateID];

NoCreateRights: ARRAY natIndex OF CreateRight =

[[i:natIndex] (null, FALSE, Creator)];

CreateRightsFirst: ARRAY natIndex OF CreateRight =

[[i: natIndex]

IF i = 0 THEN (t, TRUE, Creator)

ELSIF i = 1 THEN (g, TRUE, Creator)

ELSE (null, FALSE, Creator) ENDIF];

CreateRights: ARRAY natIndex OF ARRAY natIndex OF

CreateRight = [[i: natIndex]

IF i = 0 THEN CreateRightsFirst

ELSE NoCreateRights ENDIF];

size_Create_Rights: Array natIndex OF natIndex =

[[i:natIndex]

IF i = 0 THEN 2

ELSE 0 ENDIF];

...

Figure 3.35: Take-Grant Node Types and Create Rights

58

...

%%Links

U_Link: BOOLEAN = FALSE;

%%Filters

TicketEntity : Type = {X, Y, Conjunction};

%% Link(X,Y) = TicketEntity/right Exists dom(X), Exists dom(Y)

%% From Protection Right, To Protection Type,

%% The right sharing, copy flag can pass?,

%% TicketEntity of control ticket,

%% control right in X dom, control right in Y dom

Filters : ARRAY natIndex OF Filter = [[i:natIndex]

IF i = 0 THEN (subject, object, g, TRUE, Y, g, null)

ELSIF i = 1 THEN (subject, object, t, TRUE, Y, g, null)

ELSIF i = 2 THEN (subject, subject, g, TRUE, X, null, t)

ELSIF i = 3 THEN (object, subject, t, TRUE, X, null, t)

ELSIF i = 4 THEN (subject, object, x, TRUE, X, g, null)

ELSE (trash, trash, null, FALSE, null, push) ENDIF];

Size_Filters : natIndex = 4;

...

Figure 3.36: Take-Grant Links and Filters

...

Ticket : Type = [Node_Index, Right, BOOLEAN];

EmptyDomain: ARRAY natIndex OF Ticket = [[i : natIndex]

(1, null, FALSE)];

firstDomain : ARRAY natIndex OF Ticket = [[i:natIndex]

IF i = 0 THEN (2, x, TRUE)

ELSE (1, null, FALSE) ENDIF];

EntityDomains : ARRAY Node_Index OF ARRAY natIndex OF Ticket =

[[i: Node_Index]

IF i = 1 THEN firstDomain

ELSE EmptyDomain ENDIF];

DomainSizes : ARRAY Node_Index OF NATURAL = [[i: Node_Index]

IF i = 1 THEN 1

ELSE 0 ENDIF];

end

Figure 3.37: Take-Grant Starting Domains

59

3.3.2.1 Theorems in SAL. Theorems specified in SAL demonstrate

its power. Through the automated process, theorems are either found to be proved

or a counter example is found. The symbolic model checker (sal-smc) allows speci-

fication of properties using both linear temporal logic (LTL) and computation tree

logic (CTL). However, the current version of SAL does not support CTL counter

examples. For this reason, theorems are specified using LTL. LTL uses statements

such as:

• G(p) “always p,” stating that p is always true.

• F (p) “eventually p,” stating that p will eventually be true.

• U(p, q) “p until q” stating that p is true until q is true.

• x(p) “next p” stating in the next state p is true.

For example a statement G(p => F (q)) states that “If p then eventually q.” Because

the model is dealing with absolutes following arrival at a maximal state, theorems

will for the most part use the absolute statements. These statements are the basis

of the safety of a model.

3.3.2.2 Take-Grant Theorems. Theorems specified about the current

Take-Grant Model demonstrate its validity because the outcome is known. Verbose

output of the automated theorem prover is available (See Appendix A). Because

the Take-Grant model is graph based, visual representations of the starting and

maximal states are created. Figure 3.38 contains the starting state of the Take-

60

Figure 3.38: Take-Grant Starting State

Figure 3.39: Take-Grant Ending State

Grant specification with only entity 1 having the x right over entity 2. Figure 3.39

is the expected outcome of the specification based on how the Take-Grant entities

behave. Entity 3 is created following the create rule specified and is of type object.

The rights given to entity 1, the creator, include both the t and g rights. The x right

over entity 2 held by entity 1 is then granted to entity 3. The following theorems

prove the specification has followed the correct procedures and arrived at the correct

outcome.

CreateBeforeShare: THEOREM System |-

G(original[i] AND entity_state[1]= maximal

AND entity_state[2] = maximal

AND entity_state[3] = maximal

=> G(have_created[i]));

Figure 3.40: Take-Grant Theorem: Create Before Share

61

Created: THEOREM System |-

G(entity_state[1]= maximal

AND entity_state[2] = maximal

AND entity_state[3] = maximal

=> G(sysNodes.Num_Nodes = 3));

Figure 3.41: Take-Grant Theorem: Created

SharedXRight: THEOREM System |-

G(entity_state[1]= maximal

AND entity_state[2] = maximal

AND entity_state[3] = maximal

=> G(EXISTS(i:natIndex):

sysNodes.dom[3][i] = (2,x,TRUE)));

Figure 3.42: Take-Grant Theorem: Shared x Right

The theorem in Figure 3.40 proves original entities have all transitioned through

the creation phase before all entities are in the maximal state. This ensures that the

system is following the transitions correctly, and that all original nodes have created.

Recall that the model started with 2 nodes, the first of type subject and the second

of type object. Also, the one create rule present allowed a subject to create a new

object node. For this reason, the next theorem in Figure 3.41 checks the number of

entities within the system to be 3. This theorem also ensures that the system has

created entities correctly.

The theorem in Figure 3.42 demonstrates that the model has shared the

(2,x,TRUE) ticket correctly. This theorem once again relies on all entities to be

in the maximal state and checks for the existence of the ticket within the third en-

tity’s domain. This proves that the system shared the right correctly. It also verifies

62

Domain: THEOREM System |-

G(entity_state[1]= maximal

AND entity_state[2] = maximal

AND entity_state[3] = maximal

=>

G(EXISTS(i:natIndex):

sysNodes.dom[3][i] = (2,x,TRUE) AND

EXISTS(i:natIndex):

sysNodes.dom[3][i] = (3,g,TRUE) AND

sysNodes.Size_Dom[3] = 2 AND

EXISTS(i:natIndex):

sysNodes.dom[1][i] = (2,x,TRUE) AND

EXISTS(i:natIndex):

sysNodes.dom[1][i] = (3,g,TRUE) AND

sysNodes.Size_Dom[1] = 2 AND

sysNodes.Size_Dom[2] = 0));

Figure 3.43: Take-Grant Theorem: Domain

that the tickets assigned during the create procedure occurred correctly. Without

the tickets placed into the creators domain, namely the (3,g,TRUE) ticket, there

would not have been a link established to pass the (2,x,TRUE) ticket to the newly

created third entity.

Figure 3.43 contains the Domains theorem. It checks all the domains in the

system both for contents and size to ensure that the outcome of the system is as

expected. This ensures that both creating and sharing functions are working as they

should and that arbitrary tickets are not being added. This concludes the validation

of the Take-Grant specification.

63

3.4 Summary

In summary, this chapter introduced the tools and specification of SAL. By

using the specification model, the creation of the SPM model into the SAL was com-

pleted and shown in detail. The use of the SPM specification has been demonstrated

and validated with a Take-Grant model specification. This chapter has demonstrated

the application and flexibility of the SAL model and the application of theorems to

the safety of computer systems.

64

IV. Application Models of SPM

While demonstrating that SPM can model other protection models such as Take-

Grant is useful for validation, other protection schemes can be modeled as well. The

following section contains models in SPM that demonstrate its ability to handle

more complex systems such as operating systems with modern access controls. Once

specifications are made, theorems about the systems are created and run using sal-

smc. When run, this tool will either prove the theorem or provide counter examples.

4.1 File Systems

File systems such as the New Technology File System or NTFS have access

control rules determining which users have access to objects. These access controls

often are implemented using access control lists and specify what rights are owned by

users. Due to the hierarchical structure of file systems, access is not only determined

by a local list associated with the object but also by the directories the object resides

in. When permissions are set appropriately, users can access objects when they have

access to the parent directory. To demonstrate this aspect of access controls, a

model is created for analysis. NTFS also supports group assignment of rights. Users

belonging to a group can be granted access to files on a system. This model is

specified using a SPM model with different protection types.

65

SPMspecs: Context =

BEGIN

%%%

%% Specifications of the SPM model

%%%

ProtectionType : TYPE = {user, file, folder, trash};

Right: TYPE = {x,null};

ControlRight : Type = {a:Right| a = x OR a = null};

Figure 4.1: Hierarchy File System: Types and Rights

4.1.1 Hierarchy. The hierarchical model grants users access to files based

on the location of the file. To demonstrate this access, Figure 4.1 specifies protection

types within the system: user, file and folder. To simulate access within the system

the right, x, is defined. Entities within the system are defined in Figure 4.2. The

first entity is a user, the second a folder and the third file. For simplicity, there are

no create rules in this model.

The links and filters of the system are shown in Figure 4.3. The universal

link is false. A filter for links determined by the x ticket allows this access ticket to

flow from the folder to the user. This demonstrates the settings of the file system

that extends the rights to a folder to the rights of the contained file. In Figure 4.4,

starting tickets are listed. In this system, only the ticket representing access to the

file is contained by the folder domain one granting access from the user to the folder.

For simplicity these are the only tickets located within the system. This concludes

the specification of the Hierarchy File System model.

The result of the model can be seen in the theorems presented in the SPM.sal

file. These theorems are proven in the current specification using the Symbolic Model

66

%%max size of arrays including domains.

maxIndex : NATURAL = 2;

natIndex : Type = [0.. maxIndex];

%%Number of starting nodes in SPM specification

Num_Nodes : nznat = 3;

%%Can Create

Can_Create_Entry : Type = [ProtectionType, ProtectionType];

Can_Create_Entries : ARRAY natIndex OF Can_Create_Entry =

[[i:natIndex](trash, trash)];

Size_CC : natIndex = 0;

Max_Active : NATURAL = Num_Nodes * (1+Size_CC);

Node_Index : Type = [1..Max_Active];

NodeProTypes: Array Node_Index of ProtectionType =

[[i: Node_Index]

IF i = 1 THEN user

ELSIF i = 2 THEN folder

ELSIF i = 3 THEN file

ELSE trash ENDIF];

CreateID: Type = {Creator, created};

%% Boolean is copy Flag

CreateRight: Type = [Right, BOOLEAN, CreateID];

NoCreateRights: ARRAY natIndex OF CreateRight =

[[i:natIndex] (null, FALSE, Creator)];

CreateRights: ARRAY natIndex OF ARRAY natIndex OF

CreateRight = [[i: natIndex] NoCreateRights];

size_Create_Rights: Array natIndex OF natIndex =

[[i:natIndex] 0];

Figure 4.2: Hierarchy File System: Starting Entities

67

%%Links

U_Link: BOOLEAN = FALSE;

%%Filters

TicketEntity : Type = {X, Y, Conjunction};

%% Link(X,Y) = TicketEntity/right Exists dom(X), Exists dom(Y)

%% From Protection Right, To Protection Type,

%% The right sharing, copy flag can pass?,

%% TicketEntity of control ticket,

%% control right in X dom, control right in Y dom

Filter : Type = [ProtectionType, ProtectionType,

Right, BOOLEAN, TicketEntity,

ControlRight, ControlRight];

Filters : ARRAY natIndex OF Filter = [[i:natIndex]

IF i = 0 THEN (folder, user, x, TRUE, Y, x, null)

ELSE (trash, trash, null, FALSE, X, null, null) ENDIF];

Size_Filters : natIndex = 1;

Figure 4.3: Hierarchy File System: Links and Filters

Ticket : Type = [Node_Index, Right, BOOLEAN];

EmptyDomain: ARRAY natIndex OF Ticket = [[i : natIndex]

(1, null, FALSE)];

firstDomain : ARRAY natIndex OF Ticket = [[i:natIndex]

IF i = 0 THEN (2, x, TRUE)

ELSE (2, null, FALSE) ENDIF];

secondDomain : ARRAY natIndex OF Ticket = [[i:natIndex]

IF i = 0 THEN (3, x, TRUE)

ELSE (2, null, FALSE) ENDIF];

EntityDomains : ARRAY Node_Index OF ARRAY natIndex

OF Ticket = [[i: Node_Index]

IF i = 1 THEN firstDomain

ELSIF i = 2 THEN secondDomain

ELSE EmptyDomain ENDIF];

DomainSizes : ARRAY Node_Index OF NATURAL = [[i: Node_Index]

IF i = 1 THEN 1

ELSIF i = 2 THEN 1

ELSE 0 ENDIF];

end

Figure 4.4: Hierarchy File System: Starting Domains

68

%% All original entities create before they share tickets

CreateBeforeShare: THEOREM System |-

FORALL(i:Node_Index):G(original[i] AND

(entity_state[i] = sharing)

=> G(have_created[i]));

Figure 4.5: Hierarchy File System Theorem: Create Before Share

%% Entities that are not original do not create

NonOriginalNoCreate: THEOREM System |-

FORALL(i:Node_Index): G(NOT original[i]

=> NOT have_created[i]);

Figure 4.6: Hierarchy File System Theorem: Non-Original Do not Create

Checker. The Figure 4.5 theorem ensures the system has gone through the create

phase before sharing. This phase is only relevant to original nodes. This theorem has

been proven but is trivial in this case because there were no create rules. The theorem

as specified states that all original nodes in the sharing state have their created flag

set to true. This flag is set only when the entities are in the creating phase. This

theorem proves that entities must follow this path to completion. Figure 4.6 contains

a theorem that ensures non-original entities never create new entities. The process

to reach maximal state has only original nodes creating one entity per rule. This is

important to ensure that the system remains finite.

%% The User (entity 1) gains access to the File (entity 3)

UserAccess: THEOREM System |- G(entity_state[1] = maximal

AND entity_state[2] = maximal

AND entity_state[3] = maximal

=> EXISTS(j:natIndex): sysNodes.dom[1][j] = (3,x,TRUE));

Figure 4.7: Hierarchy File System Theorem: User Access to File

69

%% Checks all active domains to validate model behaived properly

Domains: THEOREM System |-

G(entity_state[1] = maximal

AND entity_state[2] = maximal

AND entity_state[3] = maximal

=> FORALL(i: Node_Index):

EXISTS(i:natIndex): sysNodes.dom[1][i] = (3,x,TRUE) AND

EXISTS(i:natIndex): sysNodes.dom[1][i] = (2,x,TRUE) AND

sysNodes.Size_Dom[1] = 2 AND

EXISTS(i:natIndex): sysNodes.dom[2][i] = (3,x,TRUE) AND

sysNodes.Size_Dom[2] = 1 AND

sysNodes.Size_Dom[3] = 0);

Figure 4.8: Hierarchy File System Theorem: Domains

The theorem in Figure 4.7 shows that the User in the specified system gains

access to the file. This theorem is of interest because it shows the expected outcome

of the model which is to demonstrate the effects of the hierarchical structure of the

NTFS file system. In the start of the system, the user did not have access to the file.

Access was gained from the permissions over the folder. Finally, the last theorem

specified in Figure 4.8 ensures that the outcome domain is what is expected. This

ensures that no other tickets were shared or arbitrarily created. This theorem shows

that the (3,x,TRUE) ticket is in both the folder’s domain and the user’s domain

allowing the user access to the folder due to hierarchical file permissions. It also

checks the sizes of each domain in the model to ensure that there are no additional

tickets.

4.1.2 Groups. The Group permissions model represents users gaining ac-

cess because of their membership in a group. Groups are an important aspect of

computer security that prevent non-members access to particular files. Root and

70

SPMspecs: Context =

BEGIN

%%%

%% Specifications of the SPM model

%%%

ProtectionType : TYPE = {high, low, trash};

Right: TYPE = {h, null};

ControlRight : Type = {a:Right| a = h OR a = null};

Figure 4.9: File System Groups: Types and Rights

Administrator are generally the highest privilege users in a system. These higher

privilege users are granted more access to sensitive areas within the system. Privi-

leged users exist as a group and share with others these privileged roles. The group

model in SPM captures access granted by group membership. Figure 4.9 contains

the types used in the group model which include a high and low. These represent

different groups of users that limit the privilege of the user. Rights within the model

include the h right representing a high access such as write and append. This right

is also listed as a control right thus creating links due to its presence in an entity’s

domain. Figure 4.10 shows the starting entities and create rules of the system. The

model starts with three nodes with protection level of high, low, and high respec-

tively. For simplicity there are no create rights.

The next section in the specification file is the links and filters. Figure 4.11 has

no universal link. This means links are established entirely by control access. The

array of filters contain only one allowing a high entity to share with another high

entity the h right with the copy flag when a control link is present. Furthermore, this

control link is dependent on the sharing entity having the h right over the entity it

71

%%max size of arrays including domains.

maxIndex : NATURAL = 2;

natIndex : Type = [0.. maxIndex];

%%Number of starting nodes in SPM specification

Num_Nodes : nznat = 3;

%%Can Create

Can_Create_Entry : Type = [ProtectionType, ProtectionType];

Can_Create_Entries : ARRAY natIndex OF Can_Create_Entry =

[[i:natIndex] (trash, trash)];

Size_CC : natIndex = 0;

Max_Active : NATURAL = Num_Nodes * (1+Size_CC);

Node_Index : Type = [1..Max_Active];

NodeProTypes: Array Node_Index of ProtectionType = [[i: Node_Index]

IF i = 1 THEN high

ELSIF i = 2 THEN low

ELSIF i = 3 THEN high

ELSE trash ENDIF];

CreateID: Type = {Creator, created};

%% Boolean is copy Flag

CreateRight: Type = [Right, BOOLEAN, CreateID];

NoCreateRights: ARRAY natIndex OF CreateRight =

[[i:natIndex] (null, FALSE, Creator)];

CreateRights: ARRAY natIndex OF ARRAY natIndex OF CreateRight =

[[i: natIndex] NoCreateRights];

size_Create_Rights: Array natIndex OF natIndex = [[i:natIndex] 0];

Figure 4.10: File System Groups: Starting Entities

72

%%Links

U_Link: BOOLEAN = FALSE;

%%Filters

TicketEntity : Type = {X, Y, Conjunction};

%% Link(X,Y) = TicketEntity/right Exists dom(X), Exists dom(Y)

%% From Protection Right, To Protection Type,

%% The right sharing, copy flag can pass?,

%% TicketEntity of control ticket,

%% control right in X dom, control right in Y dom

Filter : Type = [ProtectionType, ProtectionType,

Right, BOOLEAN, TicketEntity,

ControlRight, ControlRight];

Filters : ARRAY natIndex OF Filter = [[i:natIndex]

IF i = 0 THEN (high, high, h, TRUE, Y, h, null)

ELSE (trash, trash, null, FALSE, X, null, null) ENDIF];

Size_Filters : natIndex = 1;

Figure 4.11: File System Groups: Links and Filters

is sharing with designated by the last location of the h and Y in the specified filter.

The final section of the specification file is shown in Figure 4.12 and declares the

entities’ starting domains. The first entity has the h right over both the second and

third entities with the copy flag set true. Under these conditions, these two right

should be permitted to flow to the third entity by means of the control link and the

presence of a suitable filter. While the control link to the second entity is present,

no filter allows the rights to flow to the low protection type.

The theorem in Figure 4.13 ensures the system has once again gone through

the create phase before sharing. Only original nodes can create as per the process to

reach maximal state. This theorem has been proven but is trivial in this case because

there were no create rules. It is still relevant though to ensure the specification

73

Ticket : Type = [Node_Index, Right, BOOLEAN];

EmptyDomain: ARRAY natIndex OF Ticket = [[i : natIndex]

(1, null, FALSE)];

firstDomain : ARRAY natIndex OF Ticket = [[i:natIndex]

IF i = 0 THEN (2, h, TRUE)

ELSIF i = 1 THEN (3, h, TRUE)

ELSE (1, null, FALSE) ENDIF];

EntityDomains : ARRAY Node_Index OF ARRAY natIndex OF Ticket =

[[i: Node_Index]

IF i = 1 THEN firstDomain

ELSE EmptyDomain ENDIF];

DomainSizes : ARRAY Node_Index OF NATURAL = [[i: Node_Index]

IF i = 1 THEN 2

ELSE 0 ENDIF];

end

Figure 4.12: File System Groups: Starting Domains

%% All original entities create before they share tickets

CreateBeforeShare: THEOREM System |-

FORALL(i:Node_Index):G(original[i] AND

(entity_state[i] = sharing)

=> G(have_created[i]));

Figure 4.13: File System Groups Theorem: Create Before Share

74

%% Entities that are not original do not create

NonOriginalNoCreate: THEOREM System |-

FORALL(i:Node_Index): G(NOT original[i]

=> NOT have_created[i]);

Figure 4.14: File System Groups Theorem: Non-Original Do not Create

%% No Low Entities get h rights

No_h_Low: THEOREM System |-

FORALL(i:Node_Index):G(sysNodes.ProType[i]=low

=> FORALL(t:natIndex): NOT sysNodes.dom[i][t].2 = h);

Figure 4.15: File System Groups Theorem: Exclusion of low entities

behaves correctly. Figure 4.14 contains a theorem that ensures that entities that are

not original are not creating new entities. Non-original entities do not create new

entities within SPM but instead bypass this step and begin to share tickets.

The theorem in Figure 4.15 ensures that no entities with protection type low

contain a ticket with the h right proving that the group of entities high have not

leaked a ticket with this right to a non-member. Had a low member gained access,

it would be as if an ordinary user on a system had gained administrative or root

access. This type of attack is known as privilege escalation. This theorem proves

the underlying safety model of groups with respect to right h.

Figure 4.16 contains a theorem that verifies being of protection type high al-

lows the h right to flow. This theorem proves that the group in this specification

%% H right is shared between high entities (group)

hShareHigh: THEOREM System |-

FORALL(i:Node_Index):G(sysNodes.ProType[i]=high AND

entity_state[i] = maximal

=> EXISTS(t:natIndex): sysNodes.dom[i][t] = (2,h,TRUE));

Figure 4.16: File System Groups Theorem: Sharing to high entities

75

%% Checks all active domains to validate model behaved properly

Domains: THEOREM System |-

G(entity_state[1] = maximal

AND entity_state[2] = maximal

AND entity_state[3] = maximal

=> EXISTS(i:natIndex): sysNodes.dom[1][i] = (2,h,TRUE) AND

EXISTS(i:natIndex): sysNodes.dom[1][i] = (3,h,TRUE) AND

sysNodes.Size_Dom[1] = 2 AND

sysNodes.Size_Dom[2] = 0 AND

EXISTS(i:natIndex): sysNodes.dom[3][i] = (2,h,TRUE) AND

sysNodes.Size_Dom[3] = 1);

Figure 4.17: File System Groups Theorem: Domains

shares the tickets containing the h right with one another. While the previous the-

orem in Figure 4.15 ensured non-members did not gain access, it did not address

that members were getting access. The theorem in Figure 4.16 verifies that group

members have access. The theorem in Figure 4.17 verifies that the system behaved

in the expected manner. It checks for the presence of the tickets that should be in

the domains and verifies that the domains are the correct size and no other tickets

are present. This theorem proves the proper group behavior of the file system.

4.1.3 NTFS. While these models demonstrate important aspects of their

own, a combined model is also created. This model represents the groups and hi-

erarchical file structure working together. It demonstrates how SPM can represent

complex systems such as NTFS.

The combined model protection types and rights can be seen in Figure 4.18.

There are types high, low, folder and file. Only one right x to denote access is present

as a control right. The starting entities are described in Figure 4.19. Four starting

76

SPMspecs: Context =

BEGIN

%%%

%% Specifications of the SPM model

%%%

ProtectionType : TYPE = {high, low, folder, file, trash};

Right: TYPE = {x, null};

ControlRight : Type = {a:Right| a = x OR a = null};

Figure 4.18: NTFS: Types and Rights

entities are of type high, low, folder, and file respectively. There are no create rules

in the system for simplicity.

Contained in Figure 4.20 is the false universal link and the filters throughout

the system. Only one filter allows access to flow from the folder to the user of group

high. This link and filter combination requires that the user denoted as high contain

the ticket with right x over the folder. The link represents access to the folder and

the filter represents access controls being set so that access to the file can flow. The

starting domains of the NTFS model are displayed in Figure 4.21. Both the first

and second entities have access to the folder (the third entity). However, the second

entity represents the lower privileged user of protection type low. Finally, the folder

contains access to the file.

The theorem in Figure 4.22 shows that all original entities create before sharing,

and Figure 4.23 contains a theorem showing that non original entities never create.

The theorem in Figure 4.24 ensures that the access ticket to the file is never

gained by a user with protection type low. This is demonstrating the group access

control feature as seen in the previous scheme. This is despite the fact that the

77

%%max size of arrays including domains.

maxIndex : NATURAL = 2;

natIndex : Type = [0.. maxIndex];

%%Number of starting nodes in SPM specification

Num_Nodes : nznat = 4;

%%Can Create

Can_Create_Entry : Type = [ProtectionType, ProtectionType];

Can_Create_Entries : ARRAY natIndex OF Can_Create_Entry =

[[i:natIndex] (trash, trash)];

Size_CC : natIndex = 0;

Max_Active : NATURAL = Num_Nodes * (1+Size_CC);

Node_Index : Type = [1..Max_Active];

NodeProTypes: Array Node_Index of ProtectionType = [[i: Node_Index]

IF i = 1 THEN high

ELSIF i = 2 THEN low

ELSIF i = 3 THEN folder

ELSIF i = 4 THEN file

ELSE trash ENDIF];

CreateID: Type = {Creator, created};

%% Boolean is copy Flag

CreateRight: Type = [Right, BOOLEAN, CreateID];

NoCreateRights: ARRAY natIndex OF CreateRight =

[[i:natIndex] (null, FALSE, Creator)];

CreateRights: ARRAY natIndex OF ARRAY natIndex OF CreateRight =

[[i: natIndex] NoCreateRights];

size_Create_Rights: Array natIndex OF natIndex = [[i:natIndex] 0];

Figure 4.19: NTFS: Starting Entities

78

%%Links

U_Link: BOOLEAN = FALSE;

%%Filters

TicketEntity : Type = {X, Y, Conjunction};

%% Link(X,Y) = TicketEntity/right Exists dom(X), Exists dom(Y)

%% From Protection Right, To Protection Type,

%% The right sharing, copy flag can pass?,

%% TicketEntity of control ticket,

%% control right in X dom, control right in Y dom

Filter : Type = [ProtectionType, ProtectionType,

Right, BOOLEAN, TicketEntity,

ControlRight, ControlRight];

Filters : ARRAY natIndex OF Filter = [[i:natIndex]

IF i = 0 THEN (folder, high, x, TRUE, X, null, x)

ELSE (trash, trash, null, FALSE, X, null, null) ENDIF];

Size_Filters : natIndex = 2;

Figure 4.20: File System Groups: Links and Filters

low user had access to the folder containing the file. This allows the system to be

declared safe with respect to access to the file. The theorem in Figure 4.25 shows that

the first entity is granted access to the file. Figure 4.26 contains a similar theorem

that makes certain all users of the group high have gained access to the file. Finally,

Figure 4.27 contains a theorem that tests the entire system for accuracy to make

certain it behaved as expected. This model shows that the expressive power of SPM

is flexible enough to be applied to today’s security systems for verification. The

specification of SPM in SAL supports automated proving of theorems of interest.

Once the safety of a model has been proven, implementation can proceed using

secure coding practices to minimize vulnerabilities.

79

Ticket : Type = [Node_Index, Right, BOOLEAN];

EmptyDomain: ARRAY natIndex OF Ticket = [[i : natIndex]

(1, null, FALSE)];

firstDomain : ARRAY natIndex OF Ticket = [[i:natIndex]

IF i = 0 THEN (3, x, TRUE)

ELSE (1, null, FALSE) ENDIF];

secondDomain : ARRAY natIndex OF Ticket = [[i:natIndex]

IF i = 0 THEN (3,x,TRUE)

ELSE (1, null, FALSE) ENDIF];

thirdDomain : ARRAY natIndex OF Ticket = [[i:natIndex]

IF i = 0 THEN (4, x, TRUE)

ELSE (1, null, FALSE) ENDIF];

EntityDomains : ARRAY Node_Index OF ARRAY

natIndex OF Ticket = [[i: Node_Index]

IF i = 1 THEN firstDomain

ELSIF i = 2 THEN secondDomain

ELSIF i = 3 THEN thirdDomain

ELSE EmptyDomain ENDIF];

DomainSizes : ARRAY Node_Index OF NATURAL =

[[i: Node_Index]

IF i = 1 THEN 1

ELSIF i = 2 THEN 1

ELSIF i = 3 THEN 1

ELSE 0 ENDIF];

end

Figure 4.21: File System Groups: Starting Domains

%% All original entities create before they share tickets

CreateBeforeShare: THEOREM System |-

FORALL(i:Node_Index):G(original[i] AND

(entity_state[i] = sharing)

=> G(have_created[i]));

Figure 4.22: NTFS Theorem: Create Before Share

%% Entities that are not original do not create

NonOriginalNoCreate: THEOREM System |-

FORALL(i:Node_Index): G(NOT original[i]

=> NOT have_created[i]);

Figure 4.23: NTFS Theorem: Non Original do not Create

80

%% No Low Entities get access to file

NoXLow: THEOREM System |-

FORALL(i:Node_Index):G(sysNodes.ProType[i]=low

=> NOT EXISTS(t:natIndex): sysNodes.dom[i][t] = (4,x,TRUE));

Figure 4.24: NTFS Theorem: Low Entities do not Gain Access

%% The High Access User gains access to the File

UserAccess: THEOREM System |- G(entity_state[1] = maximal

AND entity_state[2] = maximal

AND entity_state[3] = maximal

AND entity_state[4] = maximal

=> EXISTS(j:natIndex): sysNodes.dom[1][j] = (4,x,TRUE));

Figure 4.25: NTFS Theorem: Access is granted to Users

%% H right is shared between high entities (group)

HighAccess: THEOREM System |-

FORALL(i:Node_Index):G(sysNodes.ProType[i]=high

AND entity_state[1] = maximal

AND entity_state[2] = maximal

AND entity_state[3] = maximal

AND entity_state[4] = maximal

=> EXISTS(t:natIndex): sysNodes.dom[i][t] = (4,x,TRUE));

Figure 4.26: File System Groups Theorem: Create Before Share

%% Checks all active domains to validate model behaved properly

Domains: THEOREM System |- G(entity_state[1] = maximal

AND entity_state[2] = maximal

AND entity_state[3] = maximal

=> EXISTS(i:natIndex): sysNodes.dom[1][i] = (3,x,TRUE) AND

EXISTS(i:natIndex): sysNodes.dom[1][i] = (4,x,TRUE) AND

sysNodes.Size_Dom[1] = 2 AND

EXISTS(i:natIndex): sysNodes.dom[2][i] = (3,x,TRUE) AND

sysNodes.Size_Dom[2] = 1 AND

EXISTS(i:natIndex): sysNodes.dom[3][i] = (4,x,TRUE) AND

sysNodes.Size_Dom[3] = 1 AND

sysNodes.Size_Dom[4] = 0);

END

Figure 4.27: File System Groups Theorem: Domains

81

4.2 Summary

This chapter includes examples of applying the SPM models within SAL to

a real-world access control system. NTFS was chosen for its wide-spread use and

interesting structure. The file system was first analyzed in small models representing

features of hierarchy and groups. Next a larger example to demonstrate the combi-

nation of these two NTFS properties was analyzed. Theorems describing the safety

of all three systems are presented and discussed.

82

V. Conclusions

5.1 Contribution

The Schematic Protection Model is specified in SAL and theorems about Take-

Grant and New Technology File System schemes are proven. Arbitrary systems can

be specified in SPM and analyzed. This is the first known automated analysis of SPM

specifications in a theorem prover. The SPM specification was created in such a way

that new specifications share the underlying framework and are configurable within

the specifications file alone. This allows new specifications to be created with ease as

demonstrated by the four unique models included within this document. This also

allows future users to more easily specify models without recreating the framework.

The built-in modules of SAL provided the needed support to make the model flexible

and entities asynchronous. This flexibility allows for the number of entities to be

dynamic and to meet the needs of different specifications. The models analyzed

in this research demonstrate the validity of the specification and its application to

real-world systems.

5.2 Limitations

The SAL framework is very useful when the system is small and manageable.

However, since it creates all possible system states, as indexes get larger and more

entities are included, the execution time grows exponentially. Furthermore, verbose

83

output from the model as it is being created does not indicate if the model will finish.

This was the reason for smaller concise models in this research. The models herein

required the use of dynamic reordering of the BDD which is an option turned off by

default. Theoretically, larger models can be analyzed on a large enough computer

with more time. However, changes to the specifications of the model require it to

be rebuilt. Saving the BDD order in a data file greatly speeds the execution of a

specification with multiple theorems as the BDD order can be read back into the

tools of SAL.

Throughout the development of the model, the limited resources documenting

the specification language and use of tools included within SAL was a hindrance.

The available documents were helpful but at times vague with limited examples. To

make matters worse, there is a relatively small user base for SAL. This issue was

especially clear when questions arose concerning the specification language and forum

questions went unanswered. The limited support of the underlying tool is a concern

to the current specification as it affects future support. For example when a previous

version of the model was nearing completion, it was determined that while recursion

is supported by SAL and is included in its documentation, dynamic recursion is

not. That is, only recursion that can be statically “unrolled” is supported. For this

reason, the original three transitions of create, share, and maximal had to be divided

into many transitions to bypass this limitation of SAL. Unrolling each recursive call

84

into its base case and other portions effectively created dynamic recursion. However,

this has greatly increased the complexity of the current specification.

5.3 Future Research

The usefulness of this model for Schematic Protection Model specifications

warrants further research. This is only the foundation as models can now be made

more easily. Future research should focus on theorems and detailed analysis of

models to determine the extent of the abilities of the automated theorem proving

capabilities.

For ease of development, a program to act as a user interface to the model would

greatly increase the usability and ease the burden of creating new specifications.

Perhaps a first step would be a SPM specification checking script that could be run

to aid in catching simple errors before SAL tools are used. Such a tool would be

very valuable when making larger specifications with long run-times. One or both of

these developer tools would greatly increase the usability of the tools created here.

Finally, as SAL advances and limitations such as recursion are removed, recod-

ing the framework to use dynamic recursion would increase its readability. Much of

its elegance is lost by unrolling recursive functions.

85

Appendix A. SAL Tool Output

For more information on this research including the model specifications and verbose
output creating from the building and proving of the models, please contact:

The Air Force Institute Of Technology

Dr. Rusty Baldwin

email: rusty.baldwin@afit.edu

phone: 937-255-6565 x4445

86

Bibliography

AGLM99. A. A. Adams, H. Gottliebsen, S. A. Linton, and U. Martin. Automated
theorem proving in support of computer algebra: symbolic definite inte-
gration as a case study. In ISSAC ’99: Proceedings of the 1999 interna-
tional symposium on Symbolic and algebraic computation, pages 253–260,
New York, NY, USA, 1999.

BCGH98. Piergiorgio Bertoli, Jacques Calmet, Fausto Giunchiglia, and Karsten
Homann. Specification and integration of theorem provers and computer
algebra systems. In AISC ’98: Proceedings of the International Confer-
ence on Artificial Intelligence and Symbolic Computation, pages 94–106,
London, UK, 1998. Springer-Verlag.

Ben09. C. Benzmüller. Automating Access Control Logics in Simple Type Theory
with LEO-II, pages 387–398. Springer Boston, 2009.

Bis03. Matt Bishop. Computer Security: Art and Science. Addison-Wesley,
2003.

DFS06. Ewen Denny, Bernd Fischer, and Johann Schumann. An empirical evalua-
tion of automated theorem provers in software certification. International
Journal on Artificial Intelligence Tools, 15(1):81 – 107, 2006.

GA08. Deepak Garg and Martin Abadi. A modal deconstruction of access control
logics. In Software Science and Computation Structures (FoSSaCS 2008).
Springer Verlag, April 2008.

HR06. Michael Huth and Mark Ryan. Logic in Computer Science: Modelling
and Reasoning about Systems. Cambridge, second edition, 2006.

IF01. Ortrun Ibens and Marc Fuchs. An automated theorem prover based
on connection tableau calculi with disjunctive constraints. International
Journal on Artificial Intelligence Tools, 10(1-2):181–198, 2001.

LdMS03. Sam Owre Leonardo de Moura and N. Shankar. The SAL Language Man-
ual. SRI International, Computer Science Laboratory 333 Ravenswood
Ave. Menlo Park, CA 94025, rev. 2) edition, August 2003.

LS77. R. J. Lipton and L. Snyder. A linear time algorithm for deciding subject
security. Journal of the Association for Computing Machinery, 24(3):455–
464, 1977.

San88. Ravinderpal Singh Sandhu. The schematic protection model: its defini-
tion and analysis for acyclic attenuating schemes. Journal of the Associ-
ation for Computing Machinery, 35(2):404–432, 1988.

87

Sev07. Jaroslav Sevck. Proving resource consumption of low-level programs us-
ing automated theorem provers. Electronic Notes in Theoretical Computer
Science, 190(1):133 – 147, 2007. Proceedings of the Second Workshop on
Bytecode Semantics, Verification, Analysis and Transformation (Byte-
code 2007).

Sny81. L. Snyder. Theft and conspiracy in the take-grant protection model.
Journal of Computer and System Sciences, 23(3):333 – 347, 1981.

88

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of

information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),

1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to and

penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
17-06-2010

2. REPORT TYPE
Master’s Thesis

3. DATES COVERED (From – To)
Sep 2008 – Jun 2010

4. TITLE AND SUBTITLE
An Application of

Automated Theorem Provers
To Computer System Security:

The Schematic Protection Model

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Mitchell D. I. Hirschfeld, Civilian

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
Air Force Instituted of Technology
Graduate School of Engineering and Management (AFIT/EN)
2950 Hobson Way
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GCO/ENG/10-18

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Air and Space Intelligence Center
Attn: Marvin T. Worst
4180 Watson Way
WPAFB OH 45433-5648
(937) 257-6592 (DSN: 787-6592)

10. SPONSOR/MONITOR’S
ACRONYM(S)
NASIC

11. SPONSOR/MONITOR’S
REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES
This material is declared work of the U.S. Government and is not subject to copyright protection in the United States.

14. ABSTRACT
The Schematic Protection Model is specified in SAL and theorems about Take-Grant and New Technology File System
schemes are proven. Arbitrary systems can be specified in SPM and analyzed. This is the first known automated analysis of
SPM specifications in a theorem prover. The SPM specification was created in such a way that new specifications share the
underlying framework and are configurable within the specifications file alone. This allows new specifications to be created
with ease as demonstrated by the four unique models included within this document. This also allows future users to more
easily specify models without recreating the framework. The built-in modules of SAL provided the needed support to make the
model flexible and entities asynchronous. This flexibility allows for the number of entities to be dynamic and to meet the needs
of different specifications. The models analyzed in this research demonstrate the validity of the specification and its application
to real-world systems.
15. SUBJECT TERMS
Schematic Protection Model, Symbolic Analysis Laboratory, Safety, Security

16. SECURITY CLASSIFICATION
OF:

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES
 89

19a. NAME OF RESPONSIBLE PERSON
Dr. Rusty Baldwin, Civilian (ENG)

REPORT
U

ABSTRACT
U

c. THIS PAGE
U

19b. TELEPHONE NUMBER (Include area code)
(937) 255-6565 x4445 rusty.baldwin@afit.edu

Standard Form 298 (Rev: 8-98)
Prescribed by ANSI Std. Z39-18

	HirschfeldThesis
	SF298

